MTH-696A: Topics in Geometric Mechanics

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} \def\coorbit#1{\mathcal{O}_{#1}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\tlangle{\langle\hspace{-1.1mm}\langle} \def\trangle{\rangle\hspace{-1.1mm}\rangle} \def\dotp#1#2{\tlangle #1, #2 \trangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\ddtat#1#2#3{\left.\ddt{#1}{#2}\right|_{#1=#3}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} \def\bivector#1{{\mathcal #1}} \def\bivectorwargs#1#2#3{\bivector{#1}(#2, #3)} \def\compose{\circ} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother %% utility used in l11.muse \def\cmag#1#2#3{\begin{bmatrix} (d \iota_{#1} + \iota_{#1} d) \Omega \end{bmatrix} ({#2}, {#3}) &= \begin{bmatrix}\lieder{#1}{\Omega}\end{bmatrix}({#2}, {#3})} \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Geometric Mechanics

Classical mechanics studies the motion of mechanical systems. It originates in celestial mechanics (which remains an active area).

The geometric aspect of mechanics arises in several ways. First, mechanical systems are generally constrained, meaning the set of all possible configurations is usually a smooth manifold. Kinetic energy in this case is generally defined by some natural Riemannian metric. Second, these mechanical systems are frequently conservative, meaning that energy is conserved, so the systems are tangent to the iso-energy manifolds. Third, there are usually variational structures underlying these systems. Finally, the ``dual'' to the variational structure is a natural geometric structure called a symplectic structure.

Objectives

We will establish the foundations of modern mechanics from the Lagrangian and Hamiltonian points-of-view. We will then learn about symmetry groups and complete integrability, and then Mather theory. If we have time, we will briefly touch on the fascinating topic of nonholonomic mechanics.

Outline

We will examine the following topics in this course:

Topic Subject Weeks
Introduction Classical mechanics & differential geometry 1-2
Chapter 1 The Lagrangian Formalism 3-4
Chapter 2 The Hamiltonian Formalism 4-5
Chapter 3 Symmetry 5-6
Chapter 3 Complete integrability 7-10
Chapter 4 Mather Theory 11-14
Chapter 5 Nonholonomic mechanics 15
- Presentations 16.

Evaluation

Your final grade will be determined by the following:

Description Contribution
Weekly assignments 40%
Individual Presentation 20%
Final Exam 40%.

Assignments

The weekly assignments. To view the html pages, you need to enable javascript.

Week Assignment Solution Week Assignment Solution
1 pdf/html pdf/html 8 pdf/html pdf/html
2 pdf/html pdf/html 9 pdf/html pdf/html
3 pdf/html pdf/html 10 pdf/html pdf/html
4 pdf/html pdf/html 11 pdf/html pdf/html
5 pdf/html pdf/html 12 pdf/html pdf/html
6 pdf/html pdf/html 13 pdf/html pdf/html
7 pdf/html pdf/html 14 pdf/html pdf/html
15 pdf/html pdf/html

Tutorial Questions

Week Tutorial Solution
9 pdf/html pdf/html
10 pdf/html pdf/html
11 pdf/html pdf/html
12 pdf/html pdf/html
13 pdf/html pdf/html
14 pdf/html pdf/html

Time & Location

Week Date Day Time Location
1 13 Jan Friday 1600-1650 PE 225
2 17 Jan Tuesday 1600-1750 PE 107 continues week 1 lecture
2 20 Jan Friday 1400-1650 PE 225
3 TBA TBA TBA TBA
Otherwise * Friday 1400-1650 PE 225

Lecture Notes

Week Notes Week Notes
1 pdf/html 8 pdf/html
2 pdf/html 9 pdf/html
3 pdf/html 10 pdf/html
4 pdf/html 11 pdf/html
5 pdf/html 12 pdf/html
6 pdf/html 13 pdf/html
7 pdf/html 14 pdf/html
15 presentations

Presentation Topics

Topic Reference(s) Presenter
Motion in a Planar Central Force Arnold, chapter 2, section 8 AA
Rigid Bodies Arnold, chapter 6, sections 26-28 SW
Normal Forms of Quadratic Hamiltonians Arnold, Appendices 6-7 CL
Geodesics on the 3-sphere Bates and Cushman, chapter 2, sections 1-2 TP
Regularization of the Kepler Problem Bates and Cushman, chapter 2, section 3.4

The presentations will be done in the final week of classes, Wednesday, 25 April from 5-7 pm in Pearce 203. Here is a sample gradesheet.

Sources

We will draw from a variety of sources, including:

@preamble{
   "\def\cprime{$'$} "
}
@book {MR1345386,
    AUTHOR = {Arnol{\cprime}d, V. I.},
     TITLE = {Mathematical methods of classical mechanics},
    SERIES = {Graduate Texts in Mathematics},
    VOLUME = {60},
      NOTE = {Translated from the 1974 Russian original by K. Vogtmann and
              A. Weinstein,
              Corrected reprint of the second (1989) edition},
 PUBLISHER = {Springer-Verlag},
   ADDRESS = {New York},
      YEAR = {199?},
     PAGES = {xvi+516},
      ISBN = {0-387-96890-3},
   MRCLASS = {70-02 (58F05 58Fxx 70Hxx)},
  MRNUMBER = {1345386 (96c:70001)},
}

@book {MR1438060,
    AUTHOR = {Cushman, Richard H. and Bates, Larry M.},
     TITLE = {Global aspects of classical integrable systems},
 PUBLISHER = {Birkh\"auser Verlag},
   ADDRESS = {Basel},
      YEAR = {1997},
     PAGES = {xvi+435},
      ISBN = {3-7643-5485-2},
   MRCLASS = {58F07 (58-01 70E15 70F05 70H05)},
  MRNUMBER = {1438060 (98a:58083)},
MRREVIEWER = {Lubomir Gavrilov},
}

@book {MR1066693,
    AUTHOR = {Guillemin, Victor and Sternberg, Shlomo},
     TITLE = {Symplectic techniques in physics},
   EDITION = {Second},
 PUBLISHER = {Cambridge University Press},
   ADDRESS = {Cambridge},
      YEAR = {1990},
     PAGES = {xii+468},
      ISBN = {0-521-38990-9},
   MRCLASS = {58F05 (58-02 58F06 70Hxx)},
  MRNUMBER = {1066693 (91d:58073)},
}

# end of index.bib

Spherical Pendulum.
Spherical Pendulum.