MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 1

DR. LEO BUTLER

A. Let $\times : \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}^3$ be the vector (=cross) product. Define the following operator ω

$$\omega_x(u,v) := \langle x, u \times v \rangle,\tag{1}$$

for $x \in \mathbf{R}^3$ and $u, v \in T_x \mathbf{R}^3 \equiv \mathbf{R}^3$. Let e_1, e_2, e_3 be the standard basis of \mathbf{R}^3 and let x_i be coordinates induced by this basis (so $x = x_1e_1 + x_2e_2 + x_3e_3$). (a) Compute $\omega = \sum_{i < j} \omega_{ij}(x) \, \mathrm{d}x_i \wedge \mathrm{d}x_j$.

(b) Compute the exterior derivative of ω , $d\omega$, and show that this equals $dx_1 \wedge dx_2 \wedge dx_3$, the

standard volume element on \mathbb{R}^3 .

B. Let $\mathbf{S}^2 = \{x \in \mathbf{R}^3 \text{ s.t. } |x| = 1\}$ be the unit sphere. Let $\eta = \omega|_{\mathbf{S}^2}$ be the restriction of the 2-form ω defined in (1). Show that η is a closed, non-degenerate 2-form.

Date: February 8, 2012.