Navigation |
---|
MTH-696a |
Course outline |
Assignments & Solutions |
Schedule |
Lecture Notes |
Sources |
Home Page of Leo Butler |
Spherical Pendulum.
We let $A : V \to V$ be a linear transformation, $x, y \in V$. \begin{align*} \exp(tA) &= I + tA + \frac{1}{2} t^2 A^2 + \cdots \\ \exp(tA) \cdot (x \tensorproduct y) &:= (\exp(tA)x) \tensorproduct (\exp(tA) y) \end{align*}
Recall:
\[ \begin{matrix} V & \stackrel{A}{\longrightarrow} & W \\ & \text{induces} \\ V^* & \stackrel{A^*}{\longleftarrow} & W^* \\ \end{matrix} \]
\begin{align*} \ip{A^* \phi}{v} &:= \ip{\phi}{Av} && \phi \in W^*, v \in V. \end{align*}