MTH-696A: Topics in Geometric Mechanics Assignment 4 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $\Liegp{G} = \Orth{n;\R}$ and let $\liealg{g} = \orth{n;\R}$ be the Lie algebra of $\Liegp{G}$.
    1. Show that $\liealg{g}$ can be identified with the skew-symmetric real $n \times n$ matrices with Lie bracket $\liebracket{x}{y} = xy-yx$.
    2. Show that the Cartan-Killing trace form $\kappa(x, y) := -\mathrm{Tr}\, (xy)$ is positive definite on $\liealg{g}$.
  2. Let us continue with the notation of the previous question. Let $\Liegp{G}$ act on $V=\Mat{n}{\R}$ by \begin{align*} g \cdot x &:= g x && g \in \Liegp{G}, x \in V. \end{align*}
    1. Show that this defines a smooth action of $\Liegp{G}$ on $V$.
    2. Let $$\mathbf{x}_k = \mathbf{diag}(\underbrace{1, \ldots, 1}_{k \text{ times}},\underbrace{0, \ldots, 0}_{n-k \text{ times}})$$ and let $V_k = \orbit{\Liegp{G}}{\mathbf{x}_k}$. Show that the columns of each $x \in V_k$ form an orthonormal basis of a $k$-dimensional subspace of $\R^n$. Conversely, for each orthonormal basis $\hat{x} = [x_1, \ldots, x_k]$ of a $k$-dimensional plane in $\R^n$, there is a unique $x \in V_k$ whose columns provide the same orthonormal basis. Conclude that $V_k$ can be identified with the set of all orthonormal bases of all $k$-dimensional subspaces of $\R^n$. [This manifold is known as the Stiefel manifold of $k$-frames in $\R^n$.]
    3. Show that $V_1$ is diffeomorphic to $\sphere{n-1}$ the unit sphere in $\R^n$.
    4. Show that $V_2$ is diffeomorphic to the unit tangent bundle of $\sphere{n-1}$.
  3. Let $e_1, \ldots, e_n$ be the standard basis of $V=\R^n$ and let $f_1, \ldots, f_n$ be the dual basis of $V^*$. Let $A \in \hom{V}{V}$ be a linear transformation.
    1. For an ordered subset $I \subset \set{1, \ldots, n}$, of cardinality $k$, let $e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$. For $k=n-1$, note that there is a bijection between the subsets $I$ and elements $i$ ($\set{i}=I^c$). Let $\phi_i = e_I$, using this bijection. Relative to the basis $\phi_1, \ldots, \phi_n$, show that he induced linear transformation $\extalg{n-1}{A} : \extalg{n-1}{V} \to \extalg{n-1}{V}$ has the matrix \begin{align*} C &= \begin{bmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & & \vdots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix} \end{align*} where $C_{ij}$ is the determinant of the $(i, j)$ minor of the matrix of $A$. Let $D_{ij} = (-1)^{i+j}C_{ji}$.
    2. Show that $AD = (\det A) I$.