MTH-696A: Topics in Geometric Mechanics Assignment 4 (by Dr. Leo Butler)
$
%% not provided in align* environment
\def\newsavebox#1{}
\def\intertext#1{\text{#1}}
\def\let#1#2{}
\def\makeatletter{}
\def\makeatother{}
\newenvironment{theorem}{\textbf{Theorem.}\rm}{}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
%% sets
\def\R{\mathbf{R}}
\def\Z{\mathbf{Z}}
\def\C{\mathbf{C}}
\def\Q{\mathbf{Q}}
\def\sphere#1{\mathbf{S}^{#1}}
\def\rp#1{\R P^{#1}}
\def\set#1{\left\{ #1 \right\}}
\def\st{\,\mathrm{s.t.}\,}
\def\extalg#1#2{\Lambda^{#1}(#2)}
\def\symalg#1#2{\mathsf{S}^{#1}(#2)}
\def\tenalg#1#2{\mathsf{T}^{#1}(#2)}
\def\hom#1#2{\mathrm{Hom}(#1;#2)}
\def\extproduct{\wedge}
\def\symmetricproduct{\cdot}
\def\tensorproduct{\otimes}
\def\image#1{\mathrm{Im}\,#1}
\def\kernel#1{\mathrm{Ker}\,#1}
\def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi}
\def\orbit#1#2{{#1}\cdot{#2}}
\def\stab#1#2{\mathrm{stab}_{#1}(#2)}
\def\Span{\mathrm{span}}
%% Lie groups
\def\GL#1{\mathrm{GL}(#1)}
\def\SL#1{\mathrm{SL}(#1)}
\def\Symp#1{\mathrm{Sp}(#1)}
\def\Orth#1{\mathrm{O}(#1)}
\def\SOrth#1{\mathrm{SO}(#1)}
\def\Unitary#1{\mathrm{U}(#1)}
\def\SUnitary#1{\mathrm{SU}(#1)}
\def\Torus#1{\mathbf{T}^{#1}}
\def\H#1{\mathbf{H}^{#1}}
\def\Diagonal#1{\mathbf{Diag}(#1)}
\def\diag#1{\mathbf{diag}\left(#1\right)}
\def\Liegp#1{\mathrm{#1}}
%% Lie algebras
\def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)}
\def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)}
\def\gl#1{\mathfrak{gl}(#1)}
\def\spl#1{\mathfrak{sl}(#1)}
\def\symp#1{\mathfrak{sp}(#1)}
\def\orth#1{\mathfrak{o}(#1)}
\def\sorth#1{\mathfrak{so}(#1)}
\def\unitary#1{\mathfrak{u}(#1)}
\def\sunitary#1{\mathfrak{su}(#1)}
\def\torus#1{\mathfrak{t}^{#1}}
\def\liealg#1{\mathfrak{#1}}
\def\liebracket#1#2{[#1,#2]}
\def\Ad#1#2{\mathrm{Ad}_{#1}{#2}}
\def\ad#1#2{\mathrm{ad}_{#1}{#2}}
\def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}}
\def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]}
%% operators
\def\D#1{\,\mathrm{d}{#1}\,}
\def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,}
\def\lieder#1#2{{\sf{L}}_{#1}{#2}}
\def\covder#1#2{\,\frac{D #2}{d{#1}}}
\def\liebracket#1#2{\left[#1,#2\right]}
\def\crossproduct{{\boldsymbol{\times}}}
\def\ip#1#2{\langle #1, #2 \rangle}
\def\norm#1{|#1|}
\def\lt{<}
\def\gt{>}
\def\ddt#1#2{\frac{d{#2}}{d{#1}}}
\def\wint#1#2{\int\limits_{#1}^{#2}}
\def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}}
%% labels, etc.
\def\labelenumi{{\bf\Alph{enumi}.}}
\def\solutioncolor{blue}
\def\solutiontopsep{3mm}
\def\solutionbotsep{0mm}
\newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}}
%% redo quote environment
\def\quote{}
\def\endquote{}
%% redo enumerate environment
\makeatletter
\let\oldenumerate\enumerate
\let\oldendenumerate\endenumerate
\def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}}
\def\endenumerate{\oldendenumerate\egroup}
\makeatother
\def\museincludegraphicsoptions{%
width=0.25\textwidth%
}
\def\museincludegraphics{%
\begingroup
\catcode`\|=0
\catcode`\\=12
\catcode`\#=12
\expandafter\includegraphics\expandafter[\museincludegraphicsoptions]
}
\def\musefigurewidth{!}
\def\musefigureheight{!}
\newsavebox{\mypicboc}%
\def\includefigure#1#2#3#4{%
\edef\fileending{#4}%
\def\svgend{svg}%
\def\pdftend{pdf_t}%
\def\pdftexend{pdf_tex}%
\def\bang{!}%
\begin{lrbox}{\mypicboc}%
\ifx\fileending\pdftend%
\input{#3.#4}%
\else%
\ifx\fileending\pdftexend
\input{#3.#4}%
\else%
\ifx\fileending\svgend%
\input{#3.#4}%
\fi\fi%
\includegraphics{#3.#4}%
\fi%
\end{lrbox}%
\edef\thiswidth{#1}\edef\thisheight{#2}%
\ifx\thiswidth\bang%
\ifx\thisheight\bang%
\resizebox{!}{!}{\usebox{\mypicboc}}%
\else%
\resizebox{!}{\thisheight}{\usebox{\mypicboc}}%
\fi%
\else%
\ifx\thisheight\bang%
\resizebox{\thiswidth}{!}{\usebox{\mypicboc}}%
\else%
\resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}%
\fi\fi}
$
-
Let $\Liegp{G} = \Orth{n;\R}$ and let $\liealg{g} = \orth{n;\R}$ be the Lie algebra of $\Liegp{G}$.
-
Show that $\liealg{g}$ can be identified with the skew-symmetric real $n \times n$ matrices with Lie bracket $\liebracket{x}{y} = xy-yx$.
-
Show that the Cartan-Killing trace form $\kappa(x, y) := -\mathrm{Tr}\, (xy)$ is positive definite on $\liealg{g}$.
-
Let us continue with the notation of the previous question. Let $\Liegp{G}$ act on $V=\Mat{n}{\R}$ by
\begin{align*}
g \cdot x &:= g x && g \in \Liegp{G}, x \in V.
\end{align*}
-
Show that this defines a smooth action of $\Liegp{G}$ on $V$.
-
Let $$\mathbf{x}_k = \mathbf{diag}(\underbrace{1, \ldots, 1}_{k \text{ times}},\underbrace{0, \ldots, 0}_{n-k \text{ times}})$$ and let $V_k = \orbit{\Liegp{G}}{\mathbf{x}_k}$. Show that the columns of each $x \in V_k$ form an orthonormal basis of a $k$-dimensional subspace of $\R^n$. Conversely, for each orthonormal basis $\hat{x} = [x_1, \ldots, x_k]$ of a $k$-dimensional plane in $\R^n$, there is a unique $x \in V_k$ whose columns provide the same orthonormal basis. Conclude that $V_k$ can be identified with the set of all orthonormal bases of all $k$-dimensional subspaces of $\R^n$. [This manifold is known as the Stiefel manifold of $k$-frames in $\R^n$.]
-
Show that $V_1$ is diffeomorphic to $\sphere{n-1}$ the unit sphere in $\R^n$.
-
Show that $V_2$ is diffeomorphic to the unit tangent bundle of $\sphere{n-1}$.
-
Let $e_1, \ldots, e_n$ be the standard basis of $V=\R^n$ and let $f_1, \ldots, f_n$ be the dual basis of $V^*$. Let $A \in \hom{V}{V}$ be a linear transformation.
-
For an ordered subset $I \subset \set{1, \ldots, n}$, of cardinality $k$, let $e_I = e_{i_1} \wedge \cdots \wedge e_{i_k}$. For $k=n-1$, note that there is a bijection between the subsets $I$ and elements $i$ ($\set{i}=I^c$). Let $\phi_i = e_I$, using this bijection.
Relative to the basis $\phi_1, \ldots, \phi_n$, show that he induced linear transformation $\extalg{n-1}{A} : \extalg{n-1}{V} \to \extalg{n-1}{V}$ has the matrix
\begin{align*}
C &=
\begin{bmatrix}
C_{11} & \cdots & C_{1n} \\
\vdots & & \vdots \\
C_{n1} & \cdots & C_{nn}
\end{bmatrix}
\end{align*}
where $C_{ij}$ is the determinant of the $(i, j)$ minor of the matrix of $A$. Let $D_{ij} = (-1)^{i+j}C_{ji}$.
-
Show that $AD = (\det A) I$.