
MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 2

DR. LEO BUTLER

A. Let M be the con�guration space of the spherical pendulum.
(a) Let c : [0, 1] → M be a smooth curve. Show directly that the work done by the sti� rod along

this curve is zero.

Solution. The force F exerted by the rod is perpendicular to the sphere, so for any curve c

tangent to the sphere we have 〈F, ċ〉 ≡ 0 which gives W =
∫ 1

0
〈F (c(t)), ċ(t)〉 dt = 0.

(b) Determine the kinetic and potential energies of a bob of mass m, assuming the sti� rod has zero
mass.

Solution. If the instantaneous velocity of the bob is v when it is at the point x, then the kinetic
energy T = 1

2 |v|
2 where | • | is the Euclidean norm in R3 restricted to TxS

2. To compute the
potential energy, let F = −ge3 be the downward force due to gravity. We choose S = −e3 to be
the point of zero potential energy and let c : [0, 1]→M be a smooth curve connecting S to x. The

work done by the gravitational force is W =
∫ 1

0
〈F, ċ(t)〉 dt =

∫ 1

0
−g dx3

dt dt = −g(x3(1)− x3(0)).
Thus W = −g∆x3 and so the potential energy is V = g(x3 + 1) since x3(0) = −1.

B. Let V be an n-dimensional vector space, and let (T∗(V ),⊗), (S∗(V ), ·) and (Λ∗(V ),∧) be the tensor,
symmetric and exterior algebras of V .
(a) Let v1, . . . , vn be a basis of V . Show that, for each natural number k, the set

{vi1 ⊗ · · · ⊗ vik s.t. 1 ≤ i1, . . . , ik ≤ n}

is a basis of Tk(V ).

Solution. The claim is certainly true for k = 1 when T1(V ) = V . So, assume the claim is
true for i, . . . , k− 1. Let φ1, . . . , φn be a dual basis of V ∗. For each k-tuple I = (i1, . . . , ik) with
1 ≤ i1, . . . , ik ≤ n, let vI = vi1 ⊗ · · · ⊗ vik and likewise for φI . The multilinearity of ⊗ implies
that the collection of vI spans T

k(V ). To prove it is a basis, suppose that η =
∑
I ηIvI = 0. We

need to show that each coe�cient ηI = 0. De�ne, for a monomial wJ ∈ Tk(V ),

〈φI , wJ〉 =

k∏
α=1

〈φiα , wjα〉.

Due to the properties of the ⊗, this is a well-de�ned map that extends from the generators to
a linear map. Moreover, we see that 〈φI , vJ〉 = δIJ . Therefore 0 = 〈φI , η〉 = ηI for all I. This
proves the linear independence.

(b) Prove the analogous facts for Λk(V ) and Sk(V ).

Solution. The proof is essentially identical, since we have only used multi-linearity of ⊗.

(c) Let us say that a k-tensor x is irreducible if there are a1, . . . , ak ∈ V such that x = a1⊗· · ·⊗ak.
Show that for k = 2, there are reducible (= not irreducible) tensors. [Remark: this is true for
all k ≥ 2.]

Solution. Let W,V be �nite-dimensional vector spaces of dimension ≥ 2. Let wi, i = 1, . . . , w
(resp. vj , j = 1, . . . , v) be a basis of W (resp. V ). We know that wi ⊗ vj is a basis of W ⊗ V .

Date: February 27, 2012.

1



2 DR. LEO BUTLER

De�ne a linear map φ : W ⊗ V → Matw×v(R) by

φ(η) = φ(
∑
ij

ηijwi ⊗ vj) =
∑
ij

ηijEij

where Eij is the w × v matrix with zeroes everywhere but in the (i, j) entry, which is 1. This
map φ is a linear isomorphism. It is clear that if η = a⊗ b, then the rank of the matrix φ(η) is 1.
Since v, w ≥ 2, there is a matrix x of rank 2 or more in Matw×v(R). Then y = φ−1(x) cannot
equal a ⊗ b. If we apply this to Tk+1(V ) = Tk(V ) ⊗ V , then we have proven the claim in full
generality.

(d) Show that the previous fact is true for both symmetric and skew-symmetric tensors, too.

(i) Solution. For symmetric tensors, let v, w ∈ V be linearly independent and de�ne
α = v·v+w·w ∈ S2(V ). Wolg, we can suppose that v, w are orthogonal unit vectors. De�ne
φ : S2(V ) → Matn×n(R) by φ(x · y) = xy′ + yx′. This map is well-de�ned on generators
of S2(V ) and extends to a linear map. Suppose that A = φ(α) equals B = φ(x · y) for
some x, y ∈ V . By construction, Av = 2v,Aw = 2w and As = 0 for all s ⊥ v, w. On the
other hand, the image of B lies in spanx, y. Therefore, we must have that x, y ∈ spanv, w.
Then, 2x = Ax = Bx = x(y′x) + y(x′x). This implies that y is a scalar multiple of x.
Therefore, the rank of B is 1; but the rank of A is 2. Absurd.

(ii) Solution. For skew-symmetric tensors, let u, v, w, x ∈ V be linearly independent and
de�ne α = u ∧ v + w ∧ x ∈ Λ2(V ). De�ne a map φ : Λ2(V ) → Matn×n(R) by φ(a ∧ b) =
ab′ − ba′. One veri�es that φ is well-de�ned on the generators of Λ2(V ) and extends to
a linear map. If A = φ(α) equals B = φ(a ∧ b) for some a, b ∈ V , then rank of A (= 4)
equals that of B (= 2). Absurd.

C. Let us continue with the notation of the previous question. Say that a linear transformation L :
T∗(V )→ T∗(V ) is a derivation if

L(x⊗ y) = L(x)⊗ y + x⊗ L(y)

for all x, y ∈ T∗(V ).
(a) Let A : V → V be a linear transformation and let exp(tA) = I + tA + 1

2 t
2A2 + · · · be the

exponential. Show that dexp(tA)
dt |t=0 induces a derivation of T∗(V ).

Solution. We have that exp(tA)x = x + tAx + O(t2). Using the multilinearity of ⊗, we have
that (exp(tA)x)⊗ (exp(tA)y) = x⊗ y+ t(Ax)⊗ y+ tx⊗ (Ay) +O(t2). Take the derivative with
respect to t at t = 0 gives the answer.

(b) Show that there is a bijection between linear transformations V → V and derivations of T∗(V ).
[Hint: show that a derivation is uniquely determined by its action on V .]

Solution. Suppose that L,M are derivations that agree on V = T1(V ). Suppose that L = M
on Tk−1(V ) for some k ≥ 2. Then L(v1⊗ · · · ⊗ vk−1⊗ vk) = L(v1⊗ · · · ⊗ vk−1)⊗ vk + v1⊗ · · · ⊗
vk−1⊗L(vk) = M(v1⊗ · · · ⊗ vk−1)⊗ vk + v1⊗ · · · ⊗ vk−1⊗M(vk) = M(v1⊗ · · · ⊗ vk−1⊗ vk) for
all v1, . . . , vk ∈ V . Therefore L and M coincide on a basis of Tk(V ), and since they are linear,
they coincide. By induction, they coincide on T∗(V ).

D. Let I be the n× n identity matrix and

J =

[
0 −I
I 0

]
J : Rn ⊕Rn → Rn ⊕Rn,

Sp(R2n) = {X ∈ Mat2n×2n(R) s.t. X ′JX = J} .

Prove that Sp(R2n) is a submanifold of Mat2n×2n(R). [Bonus: show it is a group, too.]
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Solution. De�ne the map f : Mat2n×2n(R) → so(2n;R) (where so(2n;R) is the vector space of
real skew symmetric 2n× 2n matrices), by

f(x) = x′Jx− J, x ∈ Mat2n×2n(R). (1)

Since J is skew symmetric, y = f(x) is too, for all x. Since f is quadratic in the entries of x, it is
smooth. In addition,

d fxv = v′Jx− x′Jv, x, v ∈ Mat2n×2n(R) (2)

where we have identi�ed TxMat2n×2n(R) with Mat2n×2n(R). We want to show that when x ∈ f−1(0)
(i.e. x′Jx = J), we have that d fx : Mat2n×2n(R) → so(2n;R) is a surjective linear map. The
submersion theorem then says that f−1(0) is a smooth submanifold. First, if x ∈ f−1(0), then
det(x)2 = det(x′Jx) = det(J) = 1, so x is invertible. Second, we have that d fxv = S ◦ RJx ◦ T (v)
where T (v) = v′, RJx(y) = yJx and S(z) = z − z′. The maps T and S are clearly surjective; since
Jx is invertible, so is RJx. This proves that d fx is surjective.
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Figure 1. The spherical pendulum. The bob (in green) moves freely about the pivot P .


