## MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 2

## DR. LEO BUTLER

- **A.** Let M be the configuration space of the spherical pendulum.
  - (a) Let  $c: [0,1] \to M$  be a smooth curve. Show directly that the work done by the stiff rod along this curve is zero.

**Solution**. The force F exerted by the rod is perpendicular to the sphere, so for any curve c tangent to the sphere we have  $\langle F, \dot{c} \rangle \equiv 0$  which gives  $W = \int_0^1 \langle F(c(t)), \dot{c}(t) \rangle dt = 0$ .

(b) Determine the kinetic and potential energies of a bob of mass m, assuming the stiff rod has zero mass.

**Solution**. If the instantaneous velocity of the bob is v when it is at the point x, then the kinetic energy  $T = \frac{1}{2}|v|^2$  where  $|\bullet|$  is the Euclidean norm in  $\mathbb{R}^3$  restricted to  $T_x \mathbb{S}^2$ . To compute the potential energy, let  $F = -ge_3$  be the downward force due to gravity. We choose  $S = -e_3$  to be the point of zero potential energy and let  $c : [0, 1] \to M$  be a smooth curve connecting S to x. The work done by the gravitational force is  $W = \int_0^1 \langle F, \dot{c}(t) \rangle dt = \int_0^1 -g \frac{dx_3}{dt} dt = -g(x_3(1) - x_3(0))$ . Thus  $W = -g\Delta x_3$  and so the potential energy is  $V = g(x_3 + 1)$  since  $x_3(0) = -1$ .

- **B.** Let V be an n-dimensional vector space, and let  $(\mathsf{T}^*(V), \otimes)$ ,  $(\mathsf{S}^*(V), \cdot)$  and  $(\Lambda^*(V), \wedge)$  be the tensor, symmetric and exterior algebras of V.
  - (a) Let  $v_1, \ldots, v_n$  be a basis of V. Show that, for each natural number k, the set

$$\{v_{i_1}\otimes\cdots\otimes v_{i_k} \text{ s.t. } 1\leq i_1,\ldots,i_k\leq n\}$$

is a basis of  $\mathsf{T}^k(V)$ .

**Solution**. The claim is certainly true for k = 1 when  $\mathsf{T}^1(V) = V$ . So, assume the claim is true for  $i, \ldots, k-1$ . Let  $\phi_1, \ldots, \phi_n$  be a dual basis of  $V^*$ . For each k-tuple  $I = (i_1, \ldots, i_k)$  with  $1 \leq i_1, \ldots, i_k \leq n$ , let  $v_I = v_{i_1} \otimes \cdots \otimes v_{i_k}$  and likewise for  $\phi_I$ . The multilinearity of  $\otimes$  implies that the collection of  $v_I$  spans  $\mathsf{T}^k(V)$ . To prove it is a basis, suppose that  $\eta = \sum_I \eta_I v_I = 0$ . We need to show that each coefficient  $\eta_I = 0$ . Define, for a monomial  $w_J \in \mathsf{T}^k(V)$ ,

$$\langle \phi_I, w_J \rangle = \prod_{\alpha=1}^k \langle \phi_{i_\alpha}, w_{j_\alpha} \rangle.$$

Due to the properties of the  $\otimes$ , this is a well-defined map that extends from the generators to a linear map. Moreover, we see that  $\langle \phi_I, v_J \rangle = \delta_{IJ}$ . Therefore  $0 = \langle \phi_I, \eta \rangle = \eta_I$  for all *I*. This proves the linear independence.

(b) Prove the analogous facts for  $\Lambda^k(V)$  and  $\mathsf{S}^k(V)$ .

**Solution**. The proof is essentially identical, since we have only used multi-linearity of  $\otimes$ .

(c) Let us say that a k-tensor x is irreducible if there are  $a_1, \ldots, a_k \in V$  such that  $x = a_1 \otimes \cdots \otimes a_k$ . Show that for k = 2, there are reducible (= not irreducible) tensors. [Remark: this is true for all  $k \ge 2$ .]

**Solution**. Let W, V be finite-dimensional vector spaces of dimension  $\geq 2$ . Let  $w_i, i = 1, \ldots, w$  (resp.  $v_j, j = 1, \ldots, v$ ) be a basis of W (resp. V). We know that  $w_i \otimes v_j$  is a basis of  $W \otimes V$ .

Date: February 27, 2012.

Define a linear map  $\phi: W \otimes V \to \operatorname{Mat}_{w \times v}(\mathbf{R})$  by

$$\phi(\eta) = \phi(\sum_{ij} \eta_{ij} w_i \otimes v_j) = \sum_{ij} \eta_{ij} E_{ij}$$

where  $E_{ij}$  is the  $w \times v$  matrix with zeroes everywhere but in the (i, j) entry, which is 1. This map  $\phi$  is a linear isomorphism. It is clear that if  $\eta = a \otimes b$ , then the rank of the matrix  $\phi(\eta)$  is 1. Since  $v, w \geq 2$ , there is a matrix x of rank 2 or more in  $\operatorname{Mat}_{w \times v}(\mathbf{R})$ . Then  $y = \phi^{-1}(x)$  cannot equal  $a \otimes b$ . If we apply this to  $\mathsf{T}^{k+1}(V) = \mathsf{T}^k(V) \otimes V$ , then we have proven the claim in full generality.

- (d) Show that the previous fact is true for both symmetric and skew-symmetric tensors, too.
  - (i) Solution. For symmetric tensors, let v, w ∈ V be linearly independent and define α = v·v+w·w ∈ S<sup>2</sup>(V). Wolg, we can suppose that v, w are orthogonal unit vectors. Define φ : S<sup>2</sup>(V) → Mat<sub>n×n</sub>(**R**) by φ(x · y) = xy' + yx'. This map is well-defined on generators of S<sup>2</sup>(V) and extends to a linear map. Suppose that A = φ(α) equals B = φ(x · y) for some x, y ∈ V. By construction, Av = 2v, Aw = 2w and As = 0 for all s ⊥ v, w. On the other hand, the image of B lies in spanx, y. Therefore, we must have that x, y ∈ spanv, w. Then, 2x = Ax = Bx = x(y'x) + y(x'x). This implies that y is a scalar multiple of x. Therefore, the rank of B is 1; but the rank of A is 2. Absurd.
  - (ii) Solution. For skew-symmetric tensors, let  $u, v, w, x \in V$  be linearly independent and define  $\alpha = u \wedge v + w \wedge x \in \Lambda^2(V)$ . Define a map  $\phi : \Lambda^2(V) \to \operatorname{Mat}_{n \times n}(\mathbf{R})$  by  $\phi(a \wedge b) = ab' ba'$ . One verifies that  $\phi$  is well-defined on the generators of  $\Lambda^2(V)$  and extends to a linear map. If  $A = \phi(\alpha)$  equals  $B = \phi(a \wedge b)$  for some  $a, b \in V$ , then rank of A (= 4) equals that of B (= 2). Absurd.
- C. Let us continue with the notation of the previous question. Say that a linear transformation L:  $T^*(V) \to T^*(V)$  is a derivation if

$$L(x \otimes y) = L(x) \otimes y + x \otimes L(y)$$

for all  $x, y \in \mathsf{T}^*(V)$ .

(a) Let  $A: V \to V$  be a linear transformation and let  $\exp(tA) = I + tA + \frac{1}{2}t^2A^2 + \cdots$  be the exponential. Show that  $\frac{d\exp(tA)}{dt}|_{t=0}$  induces a derivation of  $\mathsf{T}^*(V)$ .

**Solution**. We have that  $\exp(tA)x = x + tAx + O(t^2)$ . Using the multilinearity of  $\otimes$ , we have that  $(\exp(tA)x) \otimes (\exp(tA)y) = x \otimes y + t(Ax) \otimes y + tx \otimes (Ay) + O(t^2)$ . Take the derivative with respect to t at t = 0 gives the answer.

(b) Show that there is a bijection between linear transformations  $V \to V$  and derivations of  $\mathsf{T}^*(V)$ . [Hint: show that a derivation is uniquely determined by its action on V.]

**Solution**. Suppose that L, M are derivations that agree on  $V = \mathsf{T}^1(V)$ . Suppose that L = M on  $\mathsf{T}^{k-1}(V)$  for some  $k \ge 2$ . Then  $L(v_1 \otimes \cdots \otimes v_{k-1} \otimes v_k) = L(v_1 \otimes \cdots \otimes v_{k-1}) \otimes v_k + v_1 \otimes \cdots \otimes v_{k-1} \otimes L(v_k) = M(v_1 \otimes \cdots \otimes v_{k-1}) \otimes v_k + v_1 \otimes \cdots \otimes v_{k-1} \otimes M(v_k) = M(v_1 \otimes \cdots \otimes v_{k-1} \otimes v_k)$  for all  $v_1, \ldots, v_k \in V$ . Therefore L and M coincide on a basis of  $\mathsf{T}^k(V)$ , and since they are linear, they coincide. By induction, they coincide on  $\mathsf{T}^*(V)$ .

**D.** Let *I* be the  $n \times n$  identity matrix and

$$J = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \qquad \qquad J : \mathbf{R}^n \oplus \mathbf{R}^n \to \mathbf{R}^n \oplus \mathbf{R}^n,$$
$$\operatorname{Sp}(\mathbf{R}^{2n}) = \{ X \in \operatorname{Mat}_{2n \times 2n}(\mathbf{R}) \text{ s.t. } X'JX = J \}.$$

Prove that  $\text{Sp}(\mathbf{R}^{2n})$  is a submanifold of  $\text{Mat}_{2n \times 2n}(\mathbf{R})$ . [Bonus: show it is a group, too.]

**Solution**. Define the map  $f : \operatorname{Mat}_{2n \times 2n}(\mathbf{R}) \to \mathfrak{so}(2n; \mathbf{R})$  (where  $\mathfrak{so}(2n; \mathbf{R})$  is the vector space of real skew symmetric  $2n \times 2n$  matrices), by

$$f(x) = x'Jx - J, \qquad x \in \operatorname{Mat}_{2n \times 2n}(\mathbf{R}).$$
(1)

Since J is skew symmetric, y = f(x) is too, for all x. Since f is quadratic in the entries of x, it is smooth. In addition,

$$d f_x v = v' J x - x' J v, \qquad x, v \in \operatorname{Mat}_{2n \times 2n}(\mathbf{R})$$
(2)

where we have identified  $T_x \operatorname{Mat}_{2n \times 2n}(\mathbf{R})$  with  $\operatorname{Mat}_{2n \times 2n}(\mathbf{R})$ . We want to show that when  $x \in f^{-1}(0)$ (i.e. x'Jx = J), we have that  $\operatorname{d} f_x : \operatorname{Mat}_{2n \times 2n}(\mathbf{R}) \to \mathfrak{so}(2n; \mathbf{R})$  is a surjective linear map. The submersion theorem then says that  $f^{-1}(0)$  is a smooth submanifold. First, if  $x \in f^{-1}(0)$ , then  $\operatorname{det}(x)^2 = \operatorname{det}(x'Jx) = \operatorname{det}(J) = 1$ , so x is invertible. Second, we have that  $\operatorname{d} f_x v = S \circ R_{Jx} \circ T(v)$ where  $T(v) = v', R_{Jx}(y) = yJx$  and S(z) = z - z'. The maps T and S are clearly surjective; since Jx is invertible, so is  $R_{Jx}$ . This proves that  $\operatorname{d} f_x$  is surjective.



FIGURE 1. The spherical pendulum. The bob (in green) moves freely about the pivot P.