MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 2

DR. LEO BUTLER

A. Let M be the configuration space of the spherical pendulum.
(a) Let ¢:[0,1] — M be a smooth curve. Show directly that the work done by the stiff rod along
this curve is zero.

Solution. The force F' exerted by the rod is perpendicular to the sphere, so for any curve c
tangent to the sphere we have (F, ¢) = 0 which gives W = fol (F(e(t)),é(t)) dt =0.

(b) Determine the kinetic and potential energies of a bob of mass m, assuming the stiff rod has zero
mass.

Solution. If the instantaneous velocity of the bob is v when it is at the point z, then the kinetic
energy T' = 1|v|? where | o | is the Euclidean norm in R? restricted to 7,52 To compute the
potential energy, let F' = —ges be the downward force due to gravity. We choose S = —e3 to be
the point of zero potential energy and let ¢ : [0, 1] — M be a smooth curve connecting S to . The
work done by the gravitational force is W = fol (F,c(t)) dt = fol —g%s At = —g(z5(1) — 23(0)).
Thus W = —gAx3 and so the potential energy is V' = g(x3 + 1) since x3(0) = —1.

B. Let V be an n-dimensional vector space, and let (T*(V),®), (S*(V),-) and (A*(V'), A) be the tensor,
symmetric and exterior algebras of V.
(a) Let vy,...,v, be a basis of V. Show that, for each natural number &, the set
{Uil - Qui st 1 <y, 0 S?’L}

is a basis of T*(V).
Solution. The claim is certainly true for k = 1 when T*(V) = V. So, assume the claim is
true for ¢,...,k — 1. Let ¢1,...,d, be a dual basis of V*. For each k-tuple I = (i1,...,4x) with
1 <iy,...i <n,let vy =v;, ®---®@v;, and likewise for ¢;. The multilinearity of ® implies
that the collection of v; spans T*(V'). To prove it is a basis, suppose that n = >, njv; = 0. We
need to show that each coefficient n; = 0. Define, for a monomial w; € T*(V),

k
(Or,wy) H P> W)

Due to the properties of the ®, this is a well—deﬁned map that extends from the generators to
a linear map. Moreover, we see that (¢r,v;) = d7;. Therefore 0 = (¢;,n) = ny for all I. This
proves the linear independence.

(b) Prove the analogous facts for A¥(V') and S¥(V).
Solution. The proof is essentially identical, since we have only used multi-linearity of ®.

(c) Let us say that a k-tensor x is irreducible if there are a1, ...,ax € V such that z = a; ® - - - ® ay.
Show that for k = 2, there are reducible (= not irreducible) tensors. [Remark: this is true for
all k> 2]

Solution. Let W,V be finite-dimensional vector spaces of dimension > 2. Let w;,i =1,...,w
(resp. v;,j =1,...,v) be a basis of W (resp. V). We know that w; ® v; is a basis of W @ V.
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Define a linear map ¢ : W ® V' — Mat,, x,(R) by
o(n) = ¢(Z Nijwi @ vj) = Z NijEij
ij ij

where F;; is the w x v matrix with zeroes everywhere but in the (7,j) entry, which is 1. This
map ¢ is a linear isomorphism. It is clear that if » = a ®b, then the rank of the matrix ¢(n) is 1.
Since v,w > 2, there is a matrix x of rank 2 or more in Mat,,x,(R). Then y = ¢~!(x) cannot
equal a ® b. If we apply this to T**1(V) = T¥(V) ® V, then we have proven the claim in full
generality.

(d) Show that the previous fact is true for both symmetric and skew-symmetric tensors, too.

(i) Solution. For symmetric tensors, let v,w € V be linearly independent and define
a=v-v+ww € S?(V). Wolg, we can suppose that v, w are orthogonal unit vectors. Define
¢ : S?(V) — Mat, xn(R) by ¢(x - y) = 2y’ + ya’. This map is well-defined on generators
of S2(V) and extends to a linear map. Suppose that A = ¢(a) equals B = ¢(x - y) for
some x,y € V. By construction, Av = 2v, Aw = 2w and As = 0 for all s | v,w. On the
other hand, the image of B lies in spanz,y. Therefore, we must have that x,y € spanv, w.
Then, 2z = Az = Bx = z(y'z) + y(«’x). This implies that y is a scalar multiple of x.
Therefore, the rank of B is 1; but the rank of A is 2. Absurd.

(ii) Solution. For skew-symmetric tensors, let w,v,w,x € V be linearly independent and
define « = u Av +w Az € A2(V). Define a map ¢ : A2(V) — Mat,, x,(R) by ¢(a Ab) =
ab/ — ba’. One verifies that ¢ is well-defined on the generators of A%(V) and extends to
a linear map. If A = ¢(«) equals B = ¢(a A b) for some a,b € V, then rank of A (= 4)
equals that of B (= 2). Absurd.

C. Let us continue with the notation of the previous question. Say that a linear transformation L :
T*(V) — T*(V) is a derivation if

Lizoy)=Lx)®y+2Q L(y)

for all z,y € T*(V).

(a) Let A : V — V be a linear transformation and let exp(tA) = I +tA + 1A% + --- be the
dexp(tA)

exponential. Show that —

|t=o induces a derivation of T*(V).

Solution. We have that exp(tA)z = z + tAz + O(t?). Using the multilinearity of ®, we have
that (exp(tA)r) @ (exp(tA)y) = 2 @y + t(Az) @ y +tz @ (Ay) + O(t?). Take the derivative with
respect to t at t = 0 gives the answer.

(b) Show that there is a bijection between linear transformations V' — V and derivations of T*(V).
[Hint: show that a derivation is uniquely determined by its action on V]

Solution. Suppose that L, M are derivations that agree on V = T!(V). Suppose that L = M
on TF=1(V) for some k > 2. Then L(v; @+ @ vp—1 @ vg) = L(01 @+ Q1) QU + 01 Q-+ ®
V-1 @ L(vg) = M(11 @ @Up—1) @Ugp +01 @ @Up—1 @ M(vg) = M(v1 @+ - @ vp—1 @) for
all vy,...,v, € V. Therefore L and M coincide on a basis of T*(V), and since they are linear,
they coincide. By induction, they coincide on T*(V).

D. Let I be the n x n identity matrix and

J—[? ﬂ J:R"@R" >R &R,
Sp(R*") = {X € Matgnx2,(R)s.t. X' JX = J}.

Prove that Sp(R?") is a submanifold of Matay,x2,(R). [Bonus: show it is a group, too.]
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Solution. Define the map f : Matay,x2,(R) — s0(2n;R) (where so(2n; R) is the vector space of
real skew symmetric 2n X 2n matrices), by

flw)=a'Je—J, & € Matznxan(R). (1)

Since J is skew symmetric, y = f(x) is too, for all . Since f is quadratic in the entries of z, it is
smooth. In addition,

d fov =v"Jx — 2’ Ju, x,v € Mata, xon(R) (2)

where we have identified T, Matoa,, 2, (R) with Mata,, x2,(R). We want to show that when z € f~1(0)
(i.e. 2'Jxz = J), we have that df, : Mata,x2,(R) — s0(2n;R) is a surjective linear map. The
submersion theorem then says that f~1(0) is a smooth submanifold. First, if € f~1(0), then
det(r)? = det(2’'Jz) = det(J) = 1, so z is invertible. Second, we have that d f,v = S o Ry, o T(v)
where T'(v) = v', Ry,;(y) = yJx and S(z) = z — 2z’. The maps T and S are clearly surjective; since
Jx is invertible, so is Rj,. This proves that d f, is surjective.
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F1GURE 1. The spherical pendulum. The bob (in green) moves freely about the pivot P.



