MTH-696A: Topics in Geometric Mechanics Assignment 1 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $\crossproduct : \R^3 \times \R^3 \to \R^3$ be the vector (=cross) product. Define the following operator $\omega$ \begin{equation}\label{eq:omega} \omega_x ( u, v ) := \ip{x}{u \crossproduct v}, \end{equation} for $x \in \R^3$ and $u, v \in T_x \R^3 \equiv \R^3$. Let $e_1, e_2, e_3$ be the standard basis of $\R^3$ and let $x_i$ be coordinates induced by this basis (so $x=x_1 e_1 + x_2 e_2 + x_3 e_3$).
    1. Compute $\omega = \sum_{i \lt j} \omega_{ij}(x) \D{x_i} \wedge \D{x_j}$.

      We compute that \begin{align*} \omega_x(e_1, e_2) &= \ip{x}{e_3} = x_3 && \omega_x(e_2, e_3) = \ip{x}{e_1} = x_1 && \omega_x(e_3, e_1) = \ip{x}{e_2} = x_2 \end{align*} \begin{align*} \omega_x &= x_3 \D{x_1} \wedge \D{x_2} + x_1 \D{x_2} \wedge \D{x_3} + x_2 \D{x_3} \wedge \D{x_1} && \text{since $\D{x_i}$ is dual to $e_i$}. \\ \intertext{Thus,} \D{\omega}_x &= \D{x_3} \wedge \D{x_1} \wedge \D{x_2} + \D{x_1} \wedge \D{x_2} \wedge \D{x_3} + \D{x_2} \wedge \D{x_3} \wedge \D{x_1} &&= 3 \D{x_1} \wedge \D{x_2} \wedge \D{x_3}. \end{align*} Alternatively: Let $u, v, w \in T_x \R^3$. Because $\D{\omega}$ is a tensor, it suffices to extend each tangent vector as a ``constant'' vector field on $\R^3$. Then, \begin{align*} \D{\omega}_x(u, v, w) &= \lieder{u}{\omega_x(v, w)} + \lieder{v}{\omega_x(w, u)} + \lieder{w}{\omega_x(u, v)} \\ &\phantom{=} - \omega_x(u, \liebracket{v}{w}) - \omega_x(v, \liebracket{w}{u}) - \omega_x(w, \liebracket{u}{v}) \\ &= \omega_u(v, w) + \omega_v(w, u) + \omega_w(u, v) && \textrm{since $\omega$ is linear in $x$} \\ &= 3 \det \begin{bmatrix} u & v & w \end{bmatrix} = 3 \Omega_x(u, v, w), \end{align*} where $\Omega$ is the ``standard'' volume form on $\R^3$.

    2. Compute the exterior derivative of $\omega$, $\D{\omega}$, and show that this equals $\D{x_1} \wedge \D{x_2} \wedge \D{x_3}$, the standard volume element on $\R^3$.

      See above.

  2. Let $\sphere{2} = \set{x \in \R^3 \st \norm{x}=1}$ be the unit sphere. Let $\eta = \omega |_{\sphere{2}}$ be the restriction of the $2$-form $\omega$ defined in (\ref{eq:omega}). Show that $\eta$ is a closed, non-degenerate $2$-form.

    Since $\sphere{2}$ is $2$-dimensional, any $3$-form on it is $0$. This shows that $\D{\eta} = \D{\omega}|\sphere{2}$ is zero. To prove non-degeneracy, let $x \in \sphere{2}$ and $v \in T_x\sphere{2}$. Then $w = x \crossproduct v \in T_x\sphere{2}$ and is orthogonal to both $x, v$. Therefore, if $v \neq 0$, then $A=[x\ v\ w]$ has columns that form a basis of $\R^3$ so $\eta_x(v, w) = \det A \neq 0$.