Topics in Geometric Mechanics: Week 11

Leo Butler

March 30, 2012

Recall

We left off with:

- Poisson algebras;
- Poisson structures;

Poisson manifolds

Definition

Let *M* be a smooth manifold, $\{,\}$ a Poisson bracket on $C^{\infty}(M)$. We call $(M, \{,\})$ a Poisson manifold. We call \mathcal{P} ,

$$\mathcal{P}(df, dg) := \{f, g\}, \qquad \forall f, g \in C^{\infty}(M)$$

a Poisson structure.

Let $M = \mathbb{R}^3$ with its dot and cross products. Define, at $x \in \mathbb{R}^3$, $\mathcal{P}(df, dg)_x = x \cdot (\nabla f \times \nabla g) \qquad \forall f, g \in C^{\infty}(\mathbb{R}^3).$

Theorem

The Poisson structure is a (2,0) skew-symmetric tensor field on M. Conversely, given a skew-symmetric (2,0) tensor field \mathcal{P} , the equation

 $\mathcal{P}(df, dg) := \{f, g\}, \qquad \forall f, g \in C^{\infty}(M)$

defines a Poisson bracket iff

$$J^{ijk} = \sum_{\alpha} \mathcal{P}^{i\alpha} \frac{\partial \mathcal{P}^{jk}}{\partial x_{\alpha}} + \mathcal{P}^{j\alpha} \frac{\partial \mathcal{P}^{ki}}{\partial x_{\alpha}} + \mathcal{P}^{k\alpha} \frac{\partial \mathcal{P}^{ij}}{\partial x_{\alpha}}$$

where (x_i) is a coordinate system and $i, j, k = 1, ..., \dim M$.

Properties

Theorem

If \mathcal{P} is a Poisson structure and X is a hamiltonian vector field with respect to \mathcal{P} , then $L_X \mathcal{P} = 0$.

Proof. Let $f \in C^{\infty}(M)$ and $X = \mathcal{P} \cdot df$. Then $\{f, g\} = \mathcal{P}(df, dg) = L_{X}g$ for all $g \in C^{\infty}(M)$. Then

 $(L_X \mathcal{P})(dg, dh) = L_X(\mathcal{P}(dg, dh,)) - \mathcal{P}(L_X dg, dh) - \mathcal{P}(dg, L_X dh)$ = {f, {g, h}} - {{f, g}, h} - {g, {f, h}} = {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0 \forall g, h \in C^{\infty}(M).

Since the cotangent space at any point is spanned by differentials of functions, this shows that $L_X \mathcal{P} = 0$.

Symplectic manifolds

Theorem

A Poisson structure \mathcal{P} is nowhere degenerate iff the (0,2) tensor field $\Omega = \mathcal{P}^{-1}$ is a symplectic form.

Proof.

First, note that if $X = \mathcal{P} \cdot df$, then $\iota_X \Omega = \Omega \cdot X = df$ since $\Omega \cdot \mathcal{P} = 1$. We need Ω to be non-degenerate and closed. The former is clear. For the latter, let $p \in M$ and $x, y, z \in T_p M$. There are smooth functions f, g, h such that

 $x = \mathcal{P}_p \cdot df_p, y = \mathcal{P}_p \cdot dg_p, z = \mathcal{P}_p \cdot dh_p$. Let $X = \mathcal{P} \cdot df$, etc. so that x = X(p), etc.

$$\begin{bmatrix} (d\iota_X + \iota_X d)\Omega \end{bmatrix} (Y, Z) = \begin{bmatrix} \mathsf{L}_X \Omega \end{bmatrix} (Y, Z) \\ \begin{bmatrix} (d\iota_Y + \iota_Y d)\Omega \end{bmatrix} (Z, X) = \begin{bmatrix} \mathsf{L}_Y \Omega \end{bmatrix} (Z, X) \\ \begin{bmatrix} (d\iota_Z + \iota_Z d)\Omega \end{bmatrix} (X, Y) = \begin{bmatrix} \mathsf{L}_Z \Omega \end{bmatrix} (X, Y) \\ \implies 3d\Omega(X, Y, Z) = 0. \end{bmatrix}$$

Definition

A map $\phi: (M, \{,\}_M) \to (N, \{,\}_N)$ is a Poisson map iff it preserves Poisson brackets

$$\{f \circ \phi, g \circ \phi\}_{M} = \{f, g\}_{N} \circ \phi \qquad \forall f, g \in C^{\infty}(N).$$

Examples

- Let $\varphi_t : M \to M$ be the time-t map of the hamiltonian flow of $f \in C^{\infty}(M)$. Then $\phi = \varphi_t$ is a Poisson map.
- Let $\iota : \mathfrak{h} \hookrightarrow \mathfrak{g}$ be a subalgebra, let $\pi = \iota^* : \mathfrak{g}^* \to \mathfrak{h}^*$. Then π is a Poisson map.
- Let $f : M \to N$ be a diffeomorphism. Then $\phi = df^* : T^*M \to T^*N$ is a Poisson map.

Definition

Let \mathfrak{g} be a Lie algebra, and \mathfrak{h} a Lie algebra of smooth hamiltonians on $(M, \{,\})$. An homomorphism

 $egin{aligned} \Psi: \mathfrak{g} &
ightarrow \mathfrak{h} & \xi \mapsto h_{\xi} \ & ext{induces} & \ & \psi: M
ightarrow \mathfrak{g}^* & & \langle \psi(x), \xi
angle = h_{\xi}(x). \end{aligned}$

We call ψ a momentum map.

Examples

Let $h \in C^{\infty}(M)$ and $\mathfrak{h} = \mathbb{R} \cdot h$, $\mathfrak{g} = \mathbb{R}$, and $\Psi(1) = h$. Then $\psi(x) = h(x)$. This is the tautological momentum map.

2 For $\mathfrak{g} = \mathfrak{sp}(\mathbb{R}^{2n})$, $\mathfrak{h} = S^2(\mathbb{R}^{2n})$ from above,

$$\psi(z) = \frac{1}{2}zz'J \qquad \psi: \mathbf{R}^{2n} \to \mathfrak{sp}(\mathbf{R}^{2n})^* \equiv \mathfrak{sp}(\mathbf{R}^{2n}).$$

3 For $\mathfrak{g} = \mathfrak{so}(\mathbf{R}^n)$ acting on $\mathbf{R}^{2n} = \mathcal{T}^*\mathbf{R}^n$,

$$\psi(z) = \frac{1}{2}(px' - xp')$$
 $\psi: \mathbb{R}^{2n} \to \mathfrak{so}(\mathbb{R}^n)^* \equiv \mathfrak{so}(\mathbb{R}^n).$

Theorem Let $\psi : M \to \mathfrak{g}^*$ be a momentum map. Then ψ is a Poisson map.

Momentum maps and symplectic manifolds

Let (M, Ω) be a symplectic manifold, G a Lie group that acts by Poisson diffeomorphisms. For $\xi \in \mathfrak{g}$, define the vector field on M

$$\xi_M(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(t\xi) \cdot x \qquad \forall x \in M.$$

Theorem If $H^1(M)$ and $H^2(\mathfrak{g})$ vanishes, then there is a momentum map $\psi: M \to \mathfrak{g}^*$ such that the hamiltonian of ξ_M is $\psi^*\xi$ for all $\xi \in \mathfrak{g}$. Proof.

If $H^1(M)$ vanishes, then all closed 1-forms are exact. The locally hamiltonian vector field ξ_M therefore has a hamiltonian $h = h_{\xi}$. We get a linear map $\Psi : \mathfrak{g} \to C^{\infty}(M), \ \xi \mapsto h_{\xi}$. We know that $h_{[\xi,\eta]}$ is a hamiltonian of $[\xi,\eta]_M$ and that $\{h_{\xi},h_{\eta}\}$ is a hamiltonian, too. Therefore,

$$c(\xi,\eta) = h_{[\xi,\eta]}(x) - \{h_{\xi},h_{\eta}\}(x)$$

is independent of $x \in M$ and so it defines a skew-symmetric 2-form on g. It is closed, and therefore exact, so there is a $\mu \in g^*$ such that

$$c(\xi,\eta) = \langle \mu, [\xi,\eta] \rangle.$$

If we define

$$H_{\xi}=h_{\xi}-\langle \mu,\xi\rangle,$$

then $\xi \mapsto H_{\xi}$ is a Lie algebra homomorphism.