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Recall

We left o� with:

Poisson algebras;

Poisson structures;



Poisson manifolds

De�nition

Let M be a smooth manifold, {, } a Poisson bracket on C∞(M).
We call (M, {, }) a Poisson manifold. We call P,

P(df , dg) := {f , g} , ∀f , g ∈ C∞(M)

a Poisson structure.



Example

Let M = R
3 with its dot and cross products. De�ne, at x ∈ R3,

P(df , dg)x = x · (∇f×∇g) ∀f , g ∈ C∞(R3).



Theorem

The Poisson structure is a (2, 0) skew-symmetric tensor �eld on M.

Conversely, given a skew-symmetric (2, 0) tensor �eld P, the
equation

P(df , dg) := {f , g} , ∀f , g ∈ C∞(M)

de�nes a Poisson bracket i�

J ijk =
∑
α

P iα∂P jk

∂xα
+ P jα∂Pki

∂xα
+ Pkα∂P ij

∂xα

where (xi ) is a coordinate system and i , j , k = 1, . . . , dimM.



Properties

Theorem

If P is a Poisson structure and X is a hamiltonian vector �eld with

respect to P, then LXP = 0.



Proof.

Let f ∈ C∞(M) and X = P · df . Then {f , g} = P(df , dg) = LXg

for all g ∈ C∞(M). Then

(LXP)(dg , dh) = LX (P(dg , dh, ))− P(LXdg , dh)− P(dg , LXdh)

= {f , {g , h}} − {{f , g}, h} − {g , {f , h}}
= {f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} = 0

∀g , h ∈ C∞(M).

Since the cotangent space at any point is spanned by di�erentials

of functions, this shows that LXP = 0.



Symplectic manifolds

Theorem

A Poisson structure P is nowhere degenerate i� the (0, 2) tensor

�eld Ω = P−1 is a symplectic form.



Proof.

First, note that if X = P · df , then ιXΩ = Ω · X = df since

Ω · P = 1. We need Ω to be non-degenerate and closed. The

former is clear. For the latter, let p ∈ M and x , y , z ∈ TpM. There

are smooth functions f , g , h such that

x = Pp · dfp, y = Pp · dgp, z = Pp · dhp. Let X = P · df , etc. so
that x = X (p), etc.[

(dιX + ιXd)Ω
]

(Y ,Z ) =
[
LXΩ

]
(Y ,Z )[

(dιY + ιY d)Ω
]

(Z ,X ) =
[
LY Ω

]
(Z ,X )[

(dιZ + ιZd)Ω
]

(X ,Y ) =
[
LZΩ

]
(X ,Y )

=⇒ 3dΩ(X ,Y ,Z ) = 0.



Poisson maps

De�nition

A map φ : (M, {, }M)→ (N, {, }N) is a Poisson map i� it preserves

Poisson brackets

{f ◦ φ, g ◦ φ}M = {f , g}N ◦ φ ∀f , g ∈ C∞(N).



Examples

Let ϕt : M → M be the time-t map of the hamiltonian �ow of

f ∈ C∞(M). Then φ = ϕt is a Poisson map.

Let ι : h ↪→ g be a subalgebra, let π = ι∗ : g∗ → h∗. Then π is

a Poisson map.

Let f : M → N be a di�eomorphism. Then

φ = df ∗ : T ∗M → T ∗N is a Poisson map.



Momentum map

De�nition

Let g be a Lie algebra, and h a Lie algebra of smooth hamiltonians

on (M, {, }). An homomorphism

Ψ : g→ h ξ 7→ hξ

induces

ψ : M → g∗ 〈ψ(x), ξ〉 = hξ(x).

We call ψ a momentum map.



Examples

1 Let h ∈ C∞(M) and h = R · h, g = R, and Ψ(1) = h. Then

ψ(x) = h(x). This is the tautological momentum map.

2 For g = sp(R2n), h = S2(R2n) from above,

ψ(z) =
1

2
zz ′J ψ : R2n → sp(R2n)∗ ≡ sp(R2n).

3 For g = so(Rn) acting on R2n = T ∗Rn,

ψ(z) =
1

2
(px ′ − xp′) ψ : R2n → so(Rn)∗ ≡ so(Rn).



Theorem

Let ψ : M → g∗ be a momentum map. Then ψ is a Poisson map.



Momentum maps and symplectic manifolds

Let (M,Ω) be a symplectic manifold, G a Lie group that acts by

Poisson di�eomorphisms. For ξ ∈ g, de�ne the vector �eld on M

ξM(x) =
d

dt

∣∣∣∣
t=0

exp(tξ) · x ∀x ∈ M.

Theorem

If H1(M) and H2(g) vanishes, then there is a momentum map

ψ : M → g∗ such that the hamiltonian of ξM is ψ∗ξ for all ξ ∈ g.



Proof.

If H1(M) vanishes, then all closed 1-forms are exact. The locally

hamiltonian vector �eld ξM therefore has a hamiltonian h = hξ. We

get a linear map Ψ : g→ C∞(M), ξ 7→ hξ. We know that h[ξ,η] is

a hamiltonian of [ξ, η]M and that {hξ, hη} is a hamiltonian, too.

Therefore,

c(ξ, η) = h[ξ,η](x)− {hξ, hη} (x)

is independent of x ∈ M and so it de�nes a skew-symmetric 2-form

on g. It is closed, and therefore exact, so there is a µ ∈ g∗ such
that

c(ξ, η) = 〈µ, [ξ, η]〉.

If we de�ne

Hξ = hξ − 〈µ, ξ〉,

then ξ 7→ Hξ is a Lie algebra homomorphism.


