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Recall

We left off with:

m Poisson algebras;

m Poisson structures;



Poisson manifolds

Definition
Let M be a smooth manifold, {, } a Poisson bracket on C*°(M).
We call (M, {,}) a Poisson manifold. We call P,

P(df,dg) :={f.,g}, vf,g € C(M)

a Poisson structure.



Example

Let M = R3 with its dot and cross products. Define, at x € R3,

P(df,dg)x = x - (VFxVg) Vf,g € C™(R?).



Theorem

The Poisson structure is a (2,0) skew-symmetric tensor field on M.
Conversely, given a skew-symmetric (2,0) tensor field P, the
equation

P(df,dg) = {f, g}, vf,g € C*(M)
defines a Poisson bracket iff
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where (x;) is a coordinate system and i,j, k =1,... dim M.



Properties

Theorem
If P is a Poisson structure and X is a hamiltonian vector field with
respect to P, then LxP = 0.



Proof.
Let f € C°(M) and X =P -df. Then {f, g} = P(df,dg) = Lxg
for all g € C*°(M). Then

(LxP)(dg, dh) = Lx(P(dg,dh,)) — P(Lxdg, dh) — P(dg, Lxdh)
= {fv {g’ h}} - {{f,g}, h} - {g> {f’ h}}
= {fa {g’ h}} + {hv {f,g}} + {g> {ha f}} =0
g, h e CX(M).

Since the cotangent space at any point is spanned by differentials
of functions, this shows that LxP = 0. O



Symplectic manifolds

Theorem
A Poisson structure P is nowhere degenerate iff the (0,2) tensor
field Q = P~ is a symplectic form.



Proof.

First, note that if X = P - df, then 1xQ = Q- X = df since

Q-P =1. We need Q2 to be non-degenerate and closed. The
former is clear. For the latter, let p € M and x,y,z € T,M. There
are smooth functions f, g, h such that
x="Pp-dfp,y =P, -dgp,z="Pp-dhy. Let X =P - df, etc. so
that x = X(p), etc.

[(dex +exd)Q) (Y, 2Z) = [LxQ] (Y, Z

[(dvy + 0y d)Q] (Z,X) = [LyQ] (Z,X

[(diz +02d)Q (X, Y) = [LzQ] (X,Y)
= 3dQ(X,Y,Z)=0



Poisson maps

Definition
A map ¢: (M, {,}) = (N, {,}y) is a Poisson map iff it preserves
Poisson brackets

{fod.godty=1{f.gtyo¢ Vf,g € C®(N).



Examples

m Let ¢ : M — M be the time-t map of the hamiltonian flow of
f € C®°(M). Then ¢ = ¢ is a Poisson map.

m Let . : h < g be a subalgebra, let 7 =+* : g* — b*. Then 7 is
a Poisson map.

m Let f : M — N be a diffeomorphism. Then
¢=df*: T*M — T*N is a Poisson map.



Momentum map

Definition
Let g be a Lie algebra, and b a Lie algebra of smooth hamiltonians
on (M, {,}). An homomorphism

v g— f) §O—> hg
induces
Y M—g* (P(x),&) = he(x).

We call ¢ a momentum map.



Examples

Let he C*°(M)and h=R-h, g=R, and V(1) = h. Then
1(x) = h(x). This is the tautological momentum map.

For g = sp(R?"), h = S2(R?") from above,

P(z) = %zz’J Y R?™ — sp(R?™)* = sp(R?").

For g = s0(R") acting on R?" = T*R”",

W(z) = %(px' — ) ¥R = 50(R") = so(R").



Theorem
Let 1 : M — g* be a momentum map. Then 1) is a Poisson map.



Momentum maps and symplectic manifolds

Let (M, Q) be a symplectic manifold, G a Lie group that acts by
Poisson diffeomorphisms. For £ € g, define the vector field on M

Em(x) = % I exp(t€) - x Vx € M.

Theorem
If HY(M) and H?(g) vanishes, then there is a momentum map
WY : M — g* such that the hamiltonian of £y is *€ for all € € g.



Proof.

If H1(M) vanishes, then all closed 1-forms are exact. The locally
hamiltonian vector field £ therefore has a hamiltonian h = he. We
get a linear map W : g — C*°(M), { > he. We know that hye , is
a hamiltonian of [¢,7],, and that {h¢, h,} is a hamiltonian, too.
Therefore,

c(&:m) = hie(x) — {he, by} (x)

is independent of x € M and so it defines a skew-symmetric 2-form
on g. It is closed, and therefore exact, so there is a 1 € g* such
that

c(&n) = (u[&n])-

If we define

He = he — (1, €),

then £ — He is a Lie algebra homomorphism. O]



