Topics in Geometric Mechanics: Week 1

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Introduction

What is geometric mechanics? At first blush, it is an approach to studying mechanics:

Let us look briefly at each in turn.

Newtonian Mechanics

Classical mechanics \[ F = \ddt{t}{(mv)} = \ddt{t}{p} \]

Newtonian Mechanics

Classical mechanics - clarifications \[ \underbrace{F}_{{\color{red}{\textrm{what is a force?}}}} = \underbrace{\ddt{t}{\overbrace{(mv)}^{{\color{red}{\textrm{what is mass? velocity?}}}}}}_{{\color{red}{\textrm{what is the rate of change of velocity?}}}} = \overbrace{\ddt{t}{p}}^{{\color{red}{\textrm{what is momentum?}}}} \]

An Example - springs & masses

\begin{align*} A \ddot{x} &= -S(x-y) - R(x-z) \\ B \ddot{y} &= -S(y-x) - T(y-z) \\ C \ddot{z} &= -R(z-x) - T(z-y) \end{align*}

An Example - springs & masses

\begin{align*} \dfrac{d\,}{dt} \begin{bmatrix} A & 0 & 0\\0 & B & 0\\0 & 0 & C \end{bmatrix} \begin{bmatrix} \dot{x}\\\dot{y}\\\dot{z} \end{bmatrix} &= - \begin{bmatrix} +S+R & -S & -R\\ -S & +S+T & -T\\ -R & -T & +R+T \end{bmatrix} \begin{bmatrix} x\\y\\x \end{bmatrix} \\ \dfrac{d\,}{dt} \mathbf{M} \dot{\mathbf{q}} &= -\mathbf{Q} \mathbf{q} \end{align*}

What is a force?

A Force is something we integrate over a path to compute Work done.

\begin{align*} W &= \int\limits_{\sigma}^{} \ip{F}{d \sigma} \end{align*}

What is a force?

A Force is a differential 1-form.

An example - spring force

Let's compute the exterior derivative of the force 1-form $F$ for the spring-mass system:

\begin{align*} F &= \sum_i (\mathbf{Qq})_i \D{\mathbf{q}}_i = \sum_{i, j} \mathbf{Q}_{ij}\mathbf{q}_j \D{\mathbf{q}}_i \\ \D{F} &= \sum_{i, j} \mathbf{Q}_{ij} \D{\mathbf{q}}_j \wedge \D{\mathbf{q}}_i = 0 \end{align*}

since the first is symmetric in $i, j$ and the second is skew symmetric.

An example - spring force

This shows $F$ is *closed*. It is exact since every closed 1-form on $\R^n$ is exact. We compute, for the path $\sigma(t) = t \mathbf{q},$

\begin{align*} f(\mathbf{q}) &= \wint{\mathbf{0}}{\mathbf{q}} \ip{F(\sigma(t))}{\dot{\sigma}(t)} \D t = \wint{0}{1} \ip{F(t \mathbf{q})}{\mathbf{q}} \D t\\ &= - \wint{0}{1} \ip{\mathbf{Qq}}{\mathbf{q}} t \D t = - \wint{0}{1} t \D t \times \ip{\mathbf{Qq}}{\mathbf{q}} = - \frac{1}{2} \ip{\mathbf{Qq}}{\mathbf{q}}. \end{align*}

By definition $U = -f$ is the potential energy of the system.

What is a velocity?

  1. The velocity of a point with position $p(t)$ at time $t$ is $\dot{p}(t)$.
  2. We measure velocity by a measuring rod, $f$ (a scalar valued function). $$\dot{f}(t) = \ddt{t}{} f \circ p(t)$$
How to measure velocity.
How to measure velocity.

What is a velocity?

We need to do calculus. To do calculus, we need differentiable manifolds.

What is a velocity?

We need to do calculus. To do calculus, we need differentiable manifolds.

  1. A differentiable manifold $M$ is a (Hausdorff) topological space, an open covering $C=\set{U}$, and homeomorphisms $\phi_U : U \to \R^n$.
  2. The homeomorphisms $\phi_U$ satisfy: $$\phi_U \circ \phi_V^{-1} : \phi_V(U \cap V) \to \phi_U(U \cap V)$$ is a diffeomorphism for all $U, V \in C$.
Coordinate charts
Coordinate charts

Examples of manifolds

  1. $\R^n$
  2. $\sphere{n} \subset \R^{n+1}$ (the unit sphere)
  3. The group of $n \times n$ matrices of non-zero determinant, $\GL{\R^n}$.
  4. The group of solid rotations.
  5. The set of all lines in $\R^3$.

A worked example

Let $\sphere{2} \subset \R^3$ be the unit sphere.

A worked example

Let $A$ be the set of all lines $\R^3$.

Vector fields and differential forms

Let $M$ be a manifold with a coordinate system $x : U \subset M \to \R^n$.

Vector fields and differential forms

We compute that \begin{align*} \ip{\D{x_i}}{\didi{}{x_j}} &= \didi{x_i}{x_j} = \delta_{ij} \\ \ip{\D{x_i}}{V} &= \lieder{V}{x_i} = \sum_j V_j \times \ip{\D{x_i}}{\didi{}{x_j}} = V_i \\ \ip{F}{V} &= \sum_i F_i(x) V_i(x). \end{align*}