MTH-696A: Topics in Geometric Mechanics Assignment 3 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $M$ be the configuration space of the planar double pendulum. See figure 1.
    1. The configuration space of the planar double pendulum is the set of pairs of angles $(x, y) \mod 2 \pi$. What is the standard name for this surface?

      The torus, $\Torus{2}$.

    2. Determine the kinetic energy of the system depicted. The bobs of masses $m$ and $M$ move on the inflexible rods of lengths $l$ and $L$ and the suspension point $P$ is fixed.

      Let $z = l \exp(ix)$ and $w = L \exp(iy)$ so the position of the body of mass $m$ is $z$ and that of mass $M$ is $Z=z+w$. The velocities are $\dot{z}=z i \dot{x}$ and $\dot{Z} = z i \dot{x} + w i \dot{y}$. We get that $\norm{\dot{z}}=l\norm{\dot{x}}$ and $\norm{\dot{Z}}^2 = l^2 \norm{\dot{x}}^2 + 2 l L \cos(x-y) \dot{x}\dot{y} + L^2 \norm{\dot{y}}^2$. The kinetic energy is $\frac{1}{2} m \dot{z}^2 + \frac{1}{2} M \norm{\dot{Z}}^2.$

      Planar double pendulum.
      Planar double pendulum.

  2. Let $M$ be an $n$-manifold and let $g$ be a Riemannian metric on $M$.
    1. Suppose that $x_i$ and $y_j$ are smooth coordinate systems on $M$, and $x = \phi(y)$ for a smooth diffeomorphism $\phi$. Show that \[ \D{x_1} \wedge \cdots \wedge \D{x_n} = \det \Phi \cdot \D{y_1} \wedge \cdots \wedge \D{y_n}, \] where \[ \Phi = \begin{bmatrix} \displaystyle\didi{\phi_i}{y_j} \end{bmatrix} \] is the Jacobian matrix of the coordinate transformation.

      We have that $\D{x_i} = \sum_{j=1}^n \didi{\phi_i}{y_j} \D{y_j}.$ Then $\D{x_1} \wedge \cdots \wedge \D{x_n} = \sum_{j_1,\ldots, j_n} \left( \Phi^1_{j_1} \D{y_{j_1}} \right) \wedge \cdots \wedge \left( \Phi^1_{j_n} \D{y_{j_n}} \right) = \det(\Phi) \D{y_1} \wedge \cdots \wedge \D{y_n}.$

    2. In a local system of coordinates $x_i$ on $M$, one can define an $n$-form \[ \Omega = \sqrt{\det \mathbf{g}} \D{x_1} \wedge \cdots \wedge \D{x_n}, \] where \[ \mathbf{g} = [ g_{ij} ] \] is the matrix of $g = \sum_{i, j=1}^n g_{ij} \D{x_i} \cdot \D{x_j}$ in the local coordinates. Use the first part to show that if $M$ is orientable, then $\Omega$ is a tensor field on $M$. What goes wrong if $M$ is not orientable?

      Let $\Omega'$ (resp. $\mathbf{g}' = [ g'_{ij} ]$) denote $\Omega$ (resp. $\mathbf{g} = [ g_{ij} ]$) in the $y$ coordinates. We want to show that $\phi^* \Omega' = \Omega$, i.e. that the formula for $\Omega$ holds in all coordinate systems. Indeed, we compute that $g = \sum_{ij} g_{ij} \D{x_i} \symmetricproduct \D{x_j} = \sum_{i, j, k, l} g_{ij} \Phi^i_k \Phi^j_l \D{y_k} \symmetricproduct \D{y_l} = \sum_{k, l} g'_{kl} \D{y_k} \symmetricproduct \D{y_l}$. This shows that $\mathbf{g}' = \Phi' \mathbf{g} \Phi$. Then $\Omega = \sqrt{\det\mathbf{g}} \det(\Phi) \D{y_1} \wedge \cdots \wedge \D{y_n} = \sqrt{\det \mathbf{g}'} \D{y_1} \wedge \cdots \wedge \D{y_n} = \Omega'$. We have used the positivity of $\det \Phi$ for the last step.

    3. The $n$-form defined above is non-degenerate. Prove this.

      Since $g$ is a metric, $\mathbf{g}$ is positive definite so its determinant is always positive.

    4. The $n$-form $\Omega$ is called a Riemannian volume form. Compute the Riemannian $2$-form for the sphere in $\R^3$ of radius $r$. [Hint: it is easiest to use spherical coordinates on $\R^3$.]

      Let $(\theta, \phi)$ be spherical coordinates, so that $(x, y, z) = f(\theta, \phi) = r(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ for $0 \lt \phi \lt \pi$ and $0 \lt \theta \lt 2 \pi$. The vector fields $X = \D{f} \cdot \didi{}{\theta}$ and $Y = \D{f} \cdot \didi{}{\phi}$ determine the Riemannian metric by $g = \ip{X}{X} \D{\theta}^2 + 2 \ip{X}{Y} \D{\theta} \symmetricproduct \D{\phi} + \ip{Y}{Y} \D{\phi}^2$. We compute that $X = r(-\sin \theta \sin \phi, \cos \theta \sin \phi, 0)$ and $Y = r(\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi)$. This gives \begin{align} \mathbf{g} &= \begin{bmatrix} r^2 \sin^2 \phi & 0 \\ 0 & r^2 \end{bmatrix} && \Omega = r^2 \sin \phi \D{\theta} \wedge \D{\phi}. \end{align}