MTH-696A: Topics in Geometric Mechanics Assignment 2 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $M$ be the configuration space of the spherical pendulum.
    1. Let $c : [0,1] \to M$ be a smooth curve. Show directly that the work done by the stiff rod along this curve is zero.

      The force $F$ exerted by the rod is perpendicular to the sphere, so for any curve $c$ tangent to the sphere we have $\ip{F}{\dot{c}} \equiv 0$ which gives $W = \int_0^1 \ip{F(c(t))}{\dot{c}(t)}\, \D{t} = 0$.

    2. Determine the kinetic and potential energies of a bob of mass $m$, assuming the stiff rod has zero mass.

      If the instantaneous velocity of the bob is $v$ when it is at the point $x$, then the kinetic energy $T = \frac{1}{2} \norm{v}^2$ where $\norm{\bullet}$ is the Euclidean norm in $\R^3$ restricted to $T_x \sphere{2}$. To compute the potential energy, let $F = -g e_3$ be the downward force due to gravity. We choose $S = -e_3$ to be the point of zero potential energy and let $c : [0,1] \to M$ be a smooth curve connecting $S$ to $x$. The work done by the gravitational force is $W = \int_0^1 \ip{F}{\dot{c}(t)}\, \D{t} = \int_0^1 -g \ddt{t}{x_3} \D{t} = -g (x_3(1)-x_3(0))$. Thus $W = -g \Delta x_3$ and so the potential energy is $V = g (x_3+1)$ since $x_3(0)=-1$.

  2. Let $V$ be an $n$-dimensional vector space, and let $(\tenalg{*}{V},\tensorproduct)$, $(\symalg{*}{V},\symmetricproduct)$ and $(\extalg{*}{V},\extproduct)$ be the tensor, symmetric and exterior algebras of $V$.
    1. Let $v_1, \ldots, v_n$ be a basis of $V$. Show that, for each natural number $k$, the set $$\set{ v_{i_1} \tensorproduct \cdots \tensorproduct v_{i_k} \st 1 \leq i_1, \ldots, i_k \leq n}$$ is a basis of $\tenalg{k}{V}$.

      The claim is certainly true for $k=1$ when $\tenalg{1}{V} = V$. So, assume the claim is true for $i, \ldots, k-1$. Let $\phi_1, \ldots, \phi_n$ be a dual basis of $V^*$. For each $k$-tuple $I=(i_1, \ldots, i_k)$ with $1 \leq i_1, \ldots, i_k \leq n$, let $v_I = v_{i_1} \tensorproduct \cdots \tensorproduct v_{i_k}$ and likewise for $\phi_I$. The multilinearity of $\tensorproduct$ implies that the collection of $v_I$ spans $\tenalg{k}{V}$. To prove it is a basis, suppose that $\eta = \sum_I \eta_I v_I = 0$. We need to show that each coefficient $\eta_I = 0$. Define, for a monomial $w_J \in \tenalg{k}{V}$, \begin{align*} \ip{\phi_I}{w_J} = \prod_{\alpha=1}^k \ip{\phi_{i_{\alpha}}}{w_{j_{\alpha}}}. \end{align*} Due to the properties of the $\tensorproduct$, this is a well-defined map that extends from the generators to a linear map. Moreover, we see that $\ip{\phi_I}{v_J} = \delta_{IJ}$. Therefore $0 = \ip{\phi_I}{\eta} = \eta_I$ for all $I$. This proves the linear independence.

    2. Prove the analogous facts for $\extalg{k}{V}$ and $\symalg{k}{V}$.

      The proof is essentially identical, since we have only used multi-linearity of $\tensorproduct$.

    3. Let us say that a $k$-tensor $x$ is irreducible if there are $a_1, \ldots, a_k \in V$ such that $x = a_1 \tensorproduct \cdots \tensorproduct a_k$. Show that for $k = 2$, there are reducible (= not irreducible) tensors. [Remark: this is true for all $k \geq 2$.]

      Let $W, V$ be finite-dimensional vector spaces of dimension $\geq 2$. Let $w_i, i=1, \ldots, w$ (resp. $v_j, j=1, \ldots, v$) be a basis of $W$ (resp. $V$). We know that $w_i \tensorproduct v_j$ is a basis of $W \tensorproduct V$. Define a linear map $\phi : W \tensorproduct V \to \Matrect{w}{v}{\R}$ by \begin{align*} \phi(\eta) = \phi(\sum_{ij} \eta_{ij} w_i \tensorproduct v_j) &= \sum_{ij} \eta_{ij} E_{ij} \end{align*} where $E_{ij}$ is the $w \times v$ matrix with zeroes everywhere but in the $(i, j)$ entry, which is $1$. This map $\phi$ is a linear isomorphism. It is clear that if $\eta = a \tensorproduct b$, then the rank of the matrix $\phi(\eta)$ is $1$. Since $v, w \geq 2$, there is a matrix $x$ of rank $2$ or more in $\Matrect{w}{v}{\R}$. Then $y = \phi^{-1}(x)$ cannot equal $a \tensorproduct b$. If we apply this to $\tenalg{k+1}{V} = \tenalg{k}{V} \tensorproduct V$, then we have proven the claim in full generality.

    4. Show that the previous fact is true for both symmetric and skew-symmetric tensors, too.
      1. For symmetric tensors, let $v, w \in V$ be linearly independent and define $\alpha = v \symmetricproduct v + w \symmetricproduct w \in \symalg{2}{V}$. Wolg, we can suppose that $v, w$ are orthogonal unit vectors. Define $\phi : \symalg{2}{V} \to \Mat{n}{\R}$ by $\phi(x \symmetricproduct y) = xy' + yx'$. This map is well-defined on generators of $\symalg{2}{V}$ and extends to a linear map. Suppose that $A = \phi(\alpha)$ equals $B = \phi(x \symmetricproduct y)$ for some $x, y \in V$. By construction, $A v = 2v, A w = 2 w$ and $A s = 0$ for all $s \perp v, w$. On the other hand, the image of $B$ lies in $\Span{x, y}$. Therefore, we must have that $x, y \in \Span{v, w}$. Then, $2 x = A x = B x = x(y'x) + y(x'x)$. This implies that $y$ is a scalar multiple of $x$. Therefore, the rank of $B$ is $1$; but the rank of $A$ is $2$. Absurd.

      2. For skew-symmetric tensors, let $u, v, w, x \in V$ be linearly independent and define $\alpha = u \extproduct v + w \extproduct x \in \extalg{2}{V}$. Define a map $\phi : \extalg{2}{V} \to \Mat{n}{\R}$ by $\phi(a \extproduct b) = ab' - ba'$. One verifies that $\phi$ is well-defined on the generators of $\extalg{2}{V}$ and extends to a linear map. If $A = \phi(\alpha)$ equals $B = \phi(a \extproduct b)$ for some $a, b \in V$, then rank of $A$ ($=4$) equals that of $B$ ($=2$). Absurd.

  3. Let us continue with the notation of the previous question. Say that a linear transformation $L : \tenalg{*}{V} \to \tenalg{*}{V}$ is a derivation if $$L(x \tensorproduct y) = L(x) \tensorproduct y + x \tensorproduct L(y)$$ for all $x, y \in \tenalg{*}{V}$.
    1. Let $A : V \to V$ be a linear transformation and let $\exp(tA) = I + tA + \frac{1}{2} t^2 A^2 + \cdots$ be the exponential. Show that $\ddt{t}{\exp(t A)}|_{t=0}$ induces a derivation of $\tenalg{*}{V}$.

      We have that $\exp(t A)x = x + tAx + O(t^2)$. Using the multilinearity of $\tensorproduct$, we have that $(\exp(t A)x) \tensorproduct (\exp(t A)y) = x \tensorproduct y + t (Ax) \tensorproduct y + t x \tensorproduct (Ay) + O(t^2)$. Take the derivative with respect to $t$ at $t=0$ gives the answer.

    2. Show that there is a bijection between linear transformations $V \to V$ and derivations of $\tenalg{*}{V}$. [Hint: show that a derivation is uniquely determined by its action on $V$.]

      Suppose that $L, M$ are derivations that agree on $V = \tenalg{1}{V}$. Suppose that $L=M$ on $\tenalg{k-1}{V}$ for some $k \geq 2$. Then $L(v_1 \tensorproduct \cdots \tensorproduct v_{k-1} \tensorproduct v_k) = L(v_1 \tensorproduct \cdots \tensorproduct v_{k-1}) \tensorproduct v_k + v_1 \tensorproduct \cdots \tensorproduct v_{k-1} \tensorproduct L(v_k) = M(v_1 \tensorproduct \cdots \tensorproduct v_{k-1}) \tensorproduct v_k + v_1 \tensorproduct \cdots \tensorproduct v_{k-1} \tensorproduct M(v_k) = M(v_1 \tensorproduct \cdots \tensorproduct v_{k-1} \tensorproduct v_k)$ for all $v_1, \ldots, v_k \in V$. Therefore $L$ and $M$ coincide on a basis of $\tenalg{k}{V}$, and since they are linear, they coincide. By induction, they coincide on $\tenalg{*}{V}$.

  4. Let $I$ be the $n \times n$ identity matrix and \begin{align*} J &= \begin{bmatrix} 0 & -I\\I & 0 \end{bmatrix} && J : \R^n \oplus \R^n \to \R^n \oplus \R^n, \\ \Symp{\R^{2n}} &= \set{ X \in \Mat{2n}{\R} \st X'JX=J }. \end{align*} Prove that $\Symp{\R^{2n}}$ is a submanifold of $\Mat{2n}{\R}$. [Bonus: show it is a group, too.]

    Define the map $f : \Mat{2n}{\R} \to \sorth{2n;\R}$ (where $\sorth{2n;\R}$ is the vector space of real skew symmetric $2n \times 2n$ matrices), by \begin{align} f(x) &= x'Jx - J, && x \in \Mat{2n}{\R}. \end{align} Since $J$ is skew symmetric, $y = f(x)$ is too, for all $x$. Since $f$ is quadratic in the entries of $x$, it is smooth. In addition, \begin{align} \D{}f_x v &= v'Jx - x'Jv, && x, v \in \Mat{2n}{\R} \end{align} where we have identified $T_x \Mat{2n}{\R}$ with $\Mat{2n}{\R}$. We want to show that when $x \in f^{-1}(0)$ (i.e. $x'Jx = J$), we have that $\D{}f_x : \Mat{2n}{\R} \to \sorth{2n;\R}$ is a surjective linear map. The submersion theorem then says that $f^{-1}(0)$ is a smooth submanifold. First, if $x \in f^{-1}(0)$, then $\det(x)^2 = \det(x'Jx) = \det(J) = 1$, so $x$ is invertible. Second, we have that $\D{}f_x v = S \circ R_{Jx} \circ T(v)$ where $T(v)=v'$, $R_{Jx}(y)=yJx$ and $S(z) = z-z'$. The maps $T$ and $S$ are clearly surjective; since $Jx$ is invertible, so is $R_{Jx}$. This proves that $\D{}f_x$ is surjective.

    The spherical pendulum. The bob (in green) moves freely about the pivot $P$.
    The spherical pendulum. The bob (in green) moves freely about the pivot $P$.