Topics in Geometric Mechanics: Week 14

Leo Butler

April 20, 2012

Recall

We left off with:

- momentum maps;
- coadjoint orbits.

Recall - Momentum map

Definition

Let \mathfrak{g} be a Lie algebra, and \mathfrak{h} a Lie algebra of smooth hamiltonians on $(M, \{,\})$. An homomorphism

$$\begin{split} \Psi: \mathfrak{g} &
ightarrow \mathfrak{h} & \xi \mapsto h_{\xi} \ & ext{induces} \ & \psi: M
ightarrow \mathfrak{g}^* & \langle \psi(x), \xi
angle = h_{\xi}(x). \end{split}$$

We call ψ a momentum map.

Theorem

If ψ is a momentum map, then it is a Poisson map.

Convexity

Assumption: (M^{2n}, ω) is a compact symplectic manifold.

Theorem

(Atiyah-Guillemin-Sternberg) Let $T = \mathbf{T}^n$ have an effective Hamiltonian action on M with momentum map $\psi : M \to \mathfrak{t}^*$. Then $\psi(M)$ is a compact, convex subset of \mathfrak{t}^* .

Theorem

(Kirwan) If G is a compact Lie group with an effective Hamiltonian action on M with momentum map ψ , and $T \triangleleft G$ is a maximal torus, then $\psi(M) \cap \mathfrak{t}^*_+$ is a compact, convex polytope.

Theorem

(Delzant) There is a distinguished family D of convex polytopes which are the image of a torus momentum map. Given such a polytope, one can reconstruct (M, ω) , the T-action and ψ .

Lemma

Let $x \in M$ have the stabilizer subgroup $T_x \triangleleft T$ of dimension $k \leq n$. There are symplectic coordinates $(x_1, y_1, \ldots, x_k, y_k, \ldots, x_n, y_n)$ on a neighbourhood of x and a basis t_1, \ldots, t_n of t^* such that

$$\psi(p) - \psi(x) = \sum_{a=1}^{k} \frac{1}{2} (x_a^2 + y_a^2) t_a + \sum_{b=k+1}^{n} x_b t_b.$$

Example

Let (M, ω) be **S**² with its unit area form. Let $T = T^1$ act by rotation about the vertical *z*-axis. The momentum map is $\psi = z$.

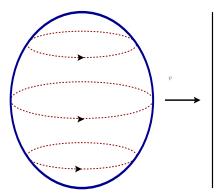


Figure: The momentum map.

Example

Let $M = S^2 \times S^2$ with ω the sum of the unit area forms, and $T = T^2$ acting by rotating about each vertical axis.

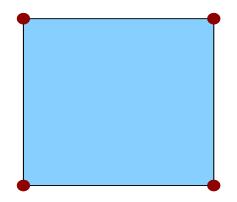


Figure: The image of the momentum map.

Liouville-Arnold Theorem

Let (M^{2n}, ω) be a symplectic manifold, f_1, \ldots, f_n be Poisson commuting, independent functions.

Theorem

Let T be a connected, compact component of a regular level set $F_c = \{f_1 = c_1, \ldots, f_n = c_n\}$. Then $T \cong \mathbf{T}^n$ and there is a neighbourhood $U \supset T$ and coordinates $(\theta, I) : U \to \mathbf{T}^n \times \mathbf{R}^n$ such that

1.
$$\omega | U = \sum_{i=1}^{n} d\theta_{i} \wedge dI_{i},$$

2.
$$f_{i} | U = F_{i}(I),$$

3.
$$X_{f_{i}} = \sum_{j=1}^{n} \frac{\partial F_{i}}{\partial I_{j}} \frac{\partial}{\partial \theta_{j}}.$$

Simple Pendulum

Take

$$H=\frac{1}{2}p^2+\cos(x).$$

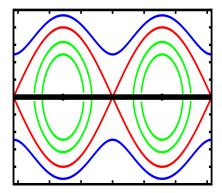


Figure: Pendulum.