Topics in Geometric Mechanics: Week 12

Leo Butler

April 7, 2012

Recall

We left off with:

- Poisson manifolds;
- Poisson maps;

Definition

Let \mathfrak{g} be a Lie algebra, and \mathfrak{h} a Lie algebra of smooth hamiltonians on $(M, \{,\})$. An homomorphism

 $egin{aligned} \Psi: \mathfrak{g} &
ightarrow \mathfrak{h} & \xi \mapsto h_{\xi} \ & ext{induces} & \ & \psi: M
ightarrow \mathfrak{g}^* & & \langle \psi(x), \xi
angle = h_{\xi}(x). \end{aligned}$

We call ψ a momentum map.

Examples

Let $h \in C^{\infty}(M)$ and $\mathfrak{h} = \mathbb{R} \cdot h$, $\mathfrak{g} = \mathbb{R}$, and $\Psi(1) = h$. Then $\psi(x) = h(x)$. This is the tautological momentum map.

2 For $\mathfrak{g} = \mathfrak{sp}(\mathbb{R}^{2n})$, $\mathfrak{h} = S^2(\mathbb{R}^{2n})$ from above,

$$\psi(z) = \frac{1}{2}zz'J \qquad \psi: \mathbf{R}^{2n} \to \mathfrak{sp}(\mathbf{R}^{2n})^* \equiv \mathfrak{sp}(\mathbf{R}^{2n}).$$

3 For $\mathfrak{g} = \mathfrak{so}(\mathbf{R}^n)$ acting on $\mathbf{R}^{2n} = \mathcal{T}^*\mathbf{R}^n$,

$$\psi(z) = \frac{1}{2}(px' - xp')$$
 $\psi: \mathbb{R}^{2n} \to \mathfrak{so}(\mathbb{R}^n)^* \equiv \mathfrak{so}(\mathbb{R}^n).$

Theorem Let $\psi : M \to \mathfrak{g}^*$ be a momentum map. Then ψ is a Poisson map.

Momentum maps and symplectic manifolds

Let (M, Ω) be a symplectic manifold, G a Lie group that acts by Poisson diffeomorphisms. For $\xi \in \mathfrak{g}$, define the vector field on M

$$\xi_M(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(t\xi) \cdot x \qquad \forall x \in M.$$

Theorem If $H^1(M)$ and $H^2(\mathfrak{g})$ vanishes, then there is a momentum map $\psi: M \to \mathfrak{g}^*$ such that the hamiltonian of ξ_M is $\psi^*\xi$ for all $\xi \in \mathfrak{g}$.

If $H^1(M)$ vanishes, then all closed 1-forms are exact. The locally hamiltonian vector field ξ_M therefore has a hamiltonian $h = h_{\xi}$. We get a linear map $\Psi : \mathfrak{g} \to C^{\infty}(M), \ \xi \mapsto h_{\xi}$. We know that $h_{[\xi,\eta]}$ is a hamiltonian of $[\xi,\eta]_M$ and that $\{h_{\xi},h_{\eta}\}$ is a hamiltonian, too. Therefore,

$$c(\xi,\eta) = h_{[\xi,\eta]}(x) - \{h_{\xi},h_{\eta}\}(x)$$

is independent of $x \in M$ and so it defines a skew-symmetric 2-form on g. It is closed, and therefore exact, so there is a $\mu \in g^*$ such that

$$c(\xi,\eta) = \langle \mu, [\xi,\eta] \rangle.$$

If we define

$$H_{\xi}=h_{\xi}-\langle \mu,\xi\rangle,$$

then $\xi \mapsto H_{\xi}$ is a Lie algebra homomorphism.

Let (T^*M, Ω) . Let $f : M \to M$ be a diffeomorphism of M. Define the canonical lift of f to T^*M by

 $F(x,p) = (f(x), (d_x f^{-1})^* p).$

Theorem

The canonical lift is a symplectomorphism.

First, assume that M is an open subset of \mathbb{R}^n . Let $x = (x_i)$ be a coordinate system in a neighbourhood of $x_0 \in M$ and $y_i = f_i(x)$ a coordinate system in a neighbourhood of $y_0 = f(x_0)$. Let p_i (resp. q_i) be linear coordinates on T_x^*M (resp. T_y^*M) so that the Liouville 1-form is $\theta_x = \sum_i p_i \, dx_i$, $\theta_y = \sum_i q_i \, dy_i$. Observe that $q = (d_x f^{-1})^* p$, i.e. $p = (d_x f)^* q$ and that $dy_i = \sum_{\alpha} \frac{\partial f_i}{\partial x_{\alpha}} \, dx_{\alpha}$.

$$F^*\theta = \sum_i F^*(q_i \, \mathrm{d} y_i) = \sum_{i,\alpha} q_i \frac{\partial f_i}{\partial x_\alpha} \, \mathrm{d} x_\alpha = \sum_\alpha \left[(df)^* q \right]_\alpha \, \mathrm{d} x_\alpha$$
$$= \sum_\alpha p_\alpha \, \mathrm{d} x_\alpha = \theta.$$

Since $F^*(d\theta) = d(F^*\theta) = d\theta$, we are done.

Lifts and Hamiltonians

Let X be a vector field on M.

Theorem The hamiltonian vector field Y of

 $H_X(x,p) = \langle p, X(x) \rangle$

satisfies

$$d\pi(Y) = X,$$
 where $\pi : T^*M \to M : (x, p) \mapsto x.$

We call Y the canonical lift of X.

We have that $d\pi(\dot{x}, \dot{p}) = \dot{x}$. Now, use Hamilton's equations

$$\dot{x} = \frac{\partial H_X}{\partial p} = X(x).$$

Lie group actions

Theorem

Let G be a Lie group that acts smoothly on M. Then, the canonical lift of this action is hamiltonian, with momentum map

 $\psi: T^*M \to \mathfrak{g}^* \qquad \langle \psi(x, p), \xi \rangle = \langle p, \xi_M(x) \rangle$

where $\xi_M(x) = \left. \frac{d}{dt} \right|_{t=0} \exp(t\xi) \cdot x$ for all $x \in M$, $\xi \in \mathfrak{g}$.

It suffices to verify that if X, Y are smooth vector fields on M, then

 $\{H_X, H_Y\} = H_{[X,Y]}.$