MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 9

DR. LEO BUTLER

We will say that $(M, \{,\})$ is a Poisson manifold if, for all smooth function f and g, $\{f, g\} = \mathcal{P}(df, dg)$ for some (2,0) skew-symmetric tensor field \mathcal{P} , and $\{,\}$ satisfies the Jacobi identity. We call \mathcal{P} the associated Poisson tensor.

- A. Let $(M, \{,\})$ be a Poisson manifold. Show that \mathcal{P} is preserved by all Hamiltonian vector fields: $L_X P = 0$ for all hamiltonian vector fields X. (Hint: show that the Jacobi identity implies this.)
- **B.** Let \mathfrak{g} be a Lie algebra with a non-trivial centre. Prove that the centre of Poisson algebra $(C^{\infty}(\mathfrak{g}^*), \cdot, \{,\})$ with the canonical Poisson structure is non-trivial.
- C. Let $(M, \{,\})$ be a Poisson manifold with associated Poisson tensor \mathcal{P} .
 - (a) Show that, for each $x \in M$, the subspace $H_x = \{X_f(x) \mid f \in C^{\infty}(M)\}$ equals the subspace $\operatorname{Im} \mathcal{P}_x$ where $\mathcal{P}_x : T_x^* M \to T_x M$.
 - (b) Prove that H_x is even dimensional and that \mathcal{P}_x induces a non-degenerate skew-symmetric 2-form on H_x .

Date: March 26, 2012.