Topics in Geometric Mechanics: Week 9

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Week 9

We left off with:

Properties of the Symplectic Form

Recall the canonical Liouville $1$-form $\theta$ on $T^*M$, and its exterior derivative: \begin{align*} \theta &= \sum_i p_i \D{x_i}, && \Omega = -\D{\theta} = \sum_i \D{x_i} \wedge \D{p_i}. \end{align*}

$\Omega$ is closed and non-degenerate.

Symplectic Manifolds

We say that $(X, \Omega)$ is a symplectic manifold if $\Omega$ is a closed and non-degenerate $2$-form on $X$.

Examples

Hamiltonian vector fields

We say a vector field $X$ on $X$ is locally Hamiltonian if $\interiorproduc{X}{\Omega} =: \chi$ is a closed $1$-form; it is Hamiltonian if $\chi = \D{H}$ is exact.

$X = \didi{}{\theta}$ is Hamiltonian on $T^*\sphere{1}$ with $H(\theta, p) = p$.

$Y = \didi{}{p}$ is locally Hamiltonian on $T^*\sphere{1}$ with $\interiorproduc{Y}{\D{\theta} \wedge \D{p}} = -\D{\theta}$.

Hamiltonian vector fields - 2

$X$ is a locally Hamiltonian vector field iff $\lieder{X}{\Omega} = 0$. If $X, Y$ are locally Hamiltonian vector fields, then $\liebracket{X}{Y} =: Z$ is Hamiltonian.

Cartan's magic

Let $X, Y$ be a vector fields, $\theta$ an $n$-form. Then \begin{align*} \lieder{X}{\theta} &= (d\interiorproduc{X} + \interiorproduc{X} d)\theta, \\ \lieder{X}{(\interiorproduc{Y}{\theta})} &= \interiorproduc{\lieder{X}{Y}}{\theta} + \interiorproduc{Y}{\lieder{X}{\theta}}. \end{align*}

By induction on $n \geq 0$. $n=0$: $\theta$ is a $0$-form, or function. Then \begin{align*} \lieder{X}{\theta} &= \ip{\D{\theta}}{X} = \interiorproduc{X}{d \theta} \\ &= \interiorproduc{X}{d \theta} + d\underbrace{\interiorproduc{X}{\theta}}_{=0}. \end{align*} $n \geq 1$: Assume $\theta = \alpha \wedge \beta = (n-1) \text{-form } \wedge 1 \text{-form}$, \begin{align*} & RHS \\ =\ & d( (\interiorproduc{X}{\alpha}) \wedge \beta + (-1)^{n-1} \alpha \wedge (\interiorproduc{X}{\beta})) &+& \interiorproduc{X}{(d \alpha \wedge \beta + (-1)^{n-1} \alpha \wedge d \beta)} \\ =\ & (d\interiorproduc{X}{\alpha}) \wedge \beta &+& (-1)^{n-2} (\interiorproduc{X}{\alpha}) \wedge d\beta \\ & (-1)^{n-1} d \alpha \wedge (\interiorproduc{X}{\beta}) &+& (-1)^{2n-2} \alpha \wedge (d\interiorproduc{X}{\beta}) \\ & (\interiorproduc{X}{d \alpha}) \wedge \beta &+& (-1)^n d \alpha \wedge (\interiorproduc{X}{\beta}) \\ & (-1)^{n-1} (\interiorproduc{X}{\alpha}) \wedge d\beta &+& (-1)^{2n-2} \alpha \wedge (\interiorproduc{X}{d \beta}) \\ =\ & LHS \end{align*}

Volume Preservation

If $X$ is a Hamiltonian vector field with Hamiltonian function $H$, then $H$ is constant along flow lines, the volume form $\Omega^n$ is preserved and the restriction of $V = \alpha \wedge \Omega^{n-1}$ to $H^{-1}(c)$ is preserved, where $\alpha$ is a smooth $1$-form on a nhd of $H^{-1}(c)$ such that $\interiorproduc{X}{\alpha}=1$.

$H$ is constant along flow lines: $$ \lieder{X}{H} = \ip{\D{H}}{X} = \Omega(X, X) = 0, $$ since $\Omega$ is skew symmetric. $\Omega^k$ is preserved since $$\lieder{X}{\Omega^k} = (\lieder{X}{\Omega^{k-1}}) \wedge \Omega + (-1)^{2k-2} \Omega^{k-1} \wedge \lieder{X}{\Omega}.$$ Finally, since $\interiorproduc{X}{\alpha} = 1$ near $H^{-1}(c)$, $\lieder{X}{\alpha}$ annihilates $X$ so \begin{align*} \lieder{X}{V} &= (\lieder{X}{\alpha}) \wedge \Omega^{n-1} && \text{since $\Omega^{n-1}$ is preserved}\\ &= f \D{H} \wedge \Omega^{n-1}. \end{align*} Note that $V$ is independent of the choice of $\alpha$.