Topics in Geometric Mechanics: Week 13

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} \def\coorbit#1{\mathcal{O}_{#1}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\tlangle{\langle\hspace{-1.1mm}\langle} \def\trangle{\rangle\hspace{-1.1mm}\rangle} \def\dotp#1#2{\tlangle #1, #2 \trangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\ddtat#1#2#3{\left.\ddt{#1}{#2}\right|_{#1=#3}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} \def\bivector#1{{\mathcal #1}} \def\bivectorwargs#1#2#3{\bivector{#1}(#2, #3)} \def\compose{\circ} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother %% utility used in l11.muse \def\cmag#1#2#3{\begin{bmatrix} (d \iota_{#1} + \iota_{#1} d) \Omega \end{bmatrix} ({#2}, {#3}) &= \begin{bmatrix}\lieder{#1}{\Omega}\end{bmatrix}({#2}, {#3})} \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Recall

We left off with:

Recall - Momentum map

Let $\liealg{g}$ be a Lie algebra, and $\liealg{h}$ a Lie algebra of smooth hamiltonians on $(M, \pb{}{})$. An homomorphism \begin{align*} \Psi &: \liealg{g} \to \liealg{h} && \xi \mapsto h_{\xi} \\ \text{induces}\\ \psi &: M \to \liealg{g}^* && \ip{\psi(x)}{\xi} = h_{\xi}(x). \end{align*} We call $\psi$ a momentum map.

If $\psi$ is a momentum map, then it is a Poisson map.

The Momentum Map & Lie Groups

Recall, we showed that if $\Liegp{G}$ is a Lie group acting smoothly on $M$, then the canonical lift of this action to $T^* M$ has momentum map.

There are two (generally distinct) actions of $\Liegp{G}$ on itself: \begin{align*} \textrm{Left translation}: &&& (h, g) &&\mapsto&& L_h(g) = h \cdot g \\ \textrm{Right translation}: &&& (h, g) &&\mapsto&& R_{h^{-1}}(g) = g \cdot h^{-1}. \end{align*} For each $\xi \in T_1 \Liegp{G}$, there are two extensions: \begin{align*} \textrm{Left translation}: &&& \xi_-(g) = d R_g \xi,\\ \textrm{Right translation}: &&& \xi_+(g) = -d L_g \xi.&& \textrm{Note transposition.} \end{align*}

Let $\Liegp{G}$ act on $\Liegp{G}$ by left (resp. right) translations. The momentum map $\psi_-$ (resp. $\psi_+$) of the left (resp. right) translation action is \begin{align*} \psi_-(g, \mu_g) &= \coAd{g^{-1}}{\mu}, && \psi_+(g, \mu_g) = -\mu, \end{align*} where $\mu = (d L_{g^{-1}})^* \mu_g \in T_1^* \Liegp{G}$.

Let $g \in \Liegp{G}$, and $\mu_g \in T_g^* \Liegp{G}$. Then $\mu_g = (d L_{g^{-1}})^* \mu$ for some $\mu \in T_1^* \Liegp{G} \equiv \liealg{g}^*$. Let $\xi \in T_1 \liegp{G}$, so that $\xi_-(g) = d R_g \xi$. \begin{align*} \ip{\psi_-(g, \mu_g)}{\xi} &= h_{\xi_-}(g, \mu_g) = \ip{\mu_g}{\xi_-(g)} = \ip{(d L_{g^{-1}})^* \mu}{(d R_g) \xi} \\ &= \ip{(d R_g)^* (d L_{g^{-1}})^* \mu}{\xi} = \ip{\coAd{g^{-1}}{\mu}}{\xi}.\\ \ip{\psi_+(g, \mu_g)}{\xi} &= h_{\xi_+}(g, \mu_g) = \ip{\mu_g}{\xi_+(g)} = -\ip{(d L_{g^{-1}})^* \mu}{(d L_g) \xi} \\ &= -\ip{\mu}{\xi}. \end{align*}

Equivariance

Let $\Liegp{G}$ act by hamiltonian diffeomorphisms on $(M, \pb{}{})$ with momentum map $\psi : M \to \liealg{g}^*$. The momentum map is equivariant, that is, \begin{align*} \psi(g \cdot m) &= \coAd{g^{-1}} \psi(m) && \forall g \in \Liegp{G}, m \in M. \end{align*}

A Change of Variables Formula

Let $f : (M, \pb{}{}_M) \to (N, \pb{}{}_N)$ be a Poisson diffeomorphism, $h \in \cinfty{M}$. The hamiltonian vector $X_h$ satisfies \begin{align*} X_{h \compose f^{-1}} = d f \cdot X_h \compose f^{-1}. \end{align*}

Let $k \in \cinfty{N}$. Then \begin{align*} \ip{X_{h \compose f^{-1}}}{dk} &= \pb{h \compose f^{-1}}{k \compose f \compose f^{-1}}_N \\ &= \pb{h}{k \compose f}_M \compose f^{-1} = \ip{X_h \compose f^{-1}}{df^*(dk)} \\ &= \ip{df(X_h \compose f^{-1})}{dk}. \end{align*}

Let $g \in \Liegp{G}$ and $m \in M$. Let $\sigma_g(m) = g \cdot m$ be the diffeomorphism induced by $g$. For $\xi \in \liealg{g}$, we have \begin{align*} X_{h_{\xi} \compose \sigma_g}(m) &= d \sigma_{g^{-1}} \cdot X_{h_{\xi}} \compose \sigma_g(m) \\ &= \ddtat{t}{}{0} \sigma_{g^{-1}} \compose \sigma_{\exp(t \xi)} \compose \sigma_g(m) \\ &= \ddtat{t}{}{0} \sigma_{\exp(t \Ad{g^{-1}}{\xi})}(m) \\ &= X_{h_{(\Ad{g^{-1}}{\xi})}} (m). && \textrm{Thus,} \\ h_{\xi} \compose \sigma_g &= h_{(\Ad{g^{-1}}{\xi})}. \end{align*} This implies equivariance.

Coadjoint orbits

Let $\mu \in \liealg{g}^*$. \begin{align*} \coorbit{\mu} &= \set{ x=\coAd{g}{\mu} \mid g \in \Liegp{G}} \end{align*} is the coadjoint orbit of $\mu$.

Each coadjoint orbit is a symplectic manifold.