Topics in Geometric Mechanics: Week 11

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\tlangle{\langle\hspace{-1.1mm}\langle} \def\trangle{\rangle\hspace{-1.1mm}\rangle} \def\dotp#1#2{\tlangle #1, #2 \trangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\ddtat#1#2#3{\left.\ddt{#1}{#2}\right|_{#1=#3}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} \def\bivector#1{{\mathcal #1}} \def\bivectorwargs#1#2#3{\bivector{#1}(#2, #3)} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother %% utility used in l11.muse \def\cmag#1#2#3{\begin{bmatrix} (d \iota_{#1} + \iota_{#1} d) \Omega \end{bmatrix} ({#2}, {#3}) &= \begin{bmatrix}\lieder{#1}{\Omega}\end{bmatrix}({#2}, {#3})} \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Recall

We left off with:

Poisson manifolds

Let $M$ be a smooth manifold, $\pb{}{}$ a Poisson bracket on $\cinfty{M}$. We call $(M, \pb{}{})$ a Poisson manifold. We call $\bivector{P}$, \begin{align*} \bivectorwargs{P}{df}{dg} &:= \pb{f}{g}, && \forall f, g \in \cinfty{M} \end{align*} a Poisson structure.

Example

Let $M=\R^3$ with its dot and cross products. Define, at $x \in \R^3$, \begin{align*} \bivectorwargs{P}{df}{dg}_x &= x \cdot (\nabla f \crossproduct \nabla g) && \forall f, g \in \cinfty{\R^3}. \end{align*}

The Poisson structure is a $(2, 0)$ skew-symmetric tensor field on $M$. Conversely, given a skew-symmetric $(2, 0)$ tensor field $\bivector{P}$, the equation \begin{align*} \bivectorwargs{P}{df}{dg} &:= \pb{f}{g}, && \forall f, g \in \cinfty{M} \end{align*} defines a Poisson bracket iff \begin{align*} J^{ijk} = \sum_{\alpha} \bivector{P}^{i \alpha} \didi{\bivector{P}^{jk}}{x_{\alpha}} + \bivector{P}^{j \alpha} \didi{\bivector{P}^{ki}}{x_{\alpha}} + \bivector{P}^{k \alpha} \didi{\bivector{P}^{ij}}{x_{\alpha}} \end{align*} where $(x_i)$ is a coordinate system and $i, j, k = 1, \ldots, \dim M$.

Properties

If $\bivector{P}$ is a Poisson structure and $X$ is a hamiltonian vector field with respect to $\bivector{P}$, then $\lieder{X}{\bivector{P}} = 0$.

Let $f \in \cinfty{M}$ and $X = \bivector{P} \cdot df$. Then $\pb{f}{g} = \bivectorwargs{P}{df}{dg} = \lieder{X}{g}$ for all $g \in \cinfty{M}$. Then \begin{align*} (\lieder{X}{\bivector{P}})(dg, dh) &= \lieder{X}{(\bivectorwargs{P}{dg, dh})} - \bivectorwargs{P}{\lieder{X}{dg}}{dh} - \bivectorwargs{P}{dg}{\lieder{X}{dh}}\\ &= \pb{f}{\pb{g}{h}} - \pb{\pb{f}{g}}{h} - \pb{g}{\pb{f}{h}} \\ &= \pb{f}{\pb{g}{h}} + \pb{h}{\pb{f}{g}} + \pb{g}{\pb{h}{f}} = 0 \\ \forall g, h \in \cinfty{M}. \end{align*} Since the cotangent space at any point is spanned by differentials of functions, this shows that $\lieder{X}{\bivector{P}} = 0$.

Symplectic manifolds

A Poisson structure $\bivector{P}$ is nowhere degenerate iff the $(0,2)$ tensor field $\Omega = \bivector{P}^{-1}$ is a symplectic form.

First, note that if $X = \bivector{P} \cdot df$, then $\iota_X \Omega = \Omega \cdot X = df$ since $\Omega \cdot \bivector{P} = 1$. % We need $\Omega$ to be non-degenerate and closed. The former is clear. For the latter, let $p \in M$ and $x, y, z \in T_p M$. There are smooth functions $f, g, h$ such that $x=\bivector{P}_{p} \cdot df_p, y=\bivector{P}_{p} \cdot dg_p, z=\bivector{P}_{p} \cdot dh_p$. Let $X = \bivector{P} \cdot df$, etc. so that $x=X(p)$, etc. \begin{align*} \cmag{X}{Y}{Z} \\ \cmag{Y}{Z}{X} \\ \cmag{Z}{X}{Y} \\ \implies 3 d\Omega(X, Y, Z) &= 0. \end{align*}

Poisson maps

A map $\phi : (M,\pb{}{}_M) \to (N,\pb{}{}_N)$ is a Poisson map iff it preserves Poisson brackets \begin{align*} \pb{f \circ \phi}{g \circ \phi}_M &= \pb{f}{g}_N \circ \phi && \forall f, g \in \cinfty{N}. \end{align*}

Examples

Momentum map

Let $\liealg{g}$ be a Lie algebra, and $\liealg{h}$ a Lie algebra of smooth hamiltonians on $(M, \pb{}{})$. An homomorphism \begin{align*} \Psi &: \liealg{g} \to \liealg{h} && \xi \mapsto h_{\xi} \\ \text{induces}\\ \psi &: M \to \liealg{g}^* && \ip{\psi(x)}{\xi} = h_{\xi}(x). \end{align*} We call $\psi$ a momentum map.

Examples

  1. Let $h \in \cinfty{M}$ and $\liealg{h} = \R \cdot h$, $\liealg{g} = \R$, and $\Psi(1) = h$. Then $\psi(x) = h(x)$. This is the tautological momentum map.
  2. For $\liealg{g} = \symp{\R^{2n}}$, $\liealg{h} = \symalg{2}{\R^{2n}}$ from above, \begin{align*} \psi(z) &= \frac{1}{2} zz'J && \psi : \R^{2n} \to \symp{\R^{2n}}^* \equiv \symp{\R^{2n}}. \end{align*}
  3. For $\liealg{g} = \sorth{\R^n}$ acting on $\R^{2n} = T^*\R^n$, \begin{align*} \psi(z) &= \frac{1}{2} (px' - xp') && \psi : \R^{2n} \to \sorth{\R^n}^* \equiv \sorth{\R^n}. \end{align*}

Let $\psi : M \to \liealg{g}^*$ be a momentum map. Then $\psi$ is a Poisson map.

Momentum maps and symplectic manifolds

Let $(M, \Omega)$ be a symplectic manifold, $\liegp{G}$ a Lie group that acts by Poisson diffeomorphisms. For $\xi \in \liealg{g}$, define the vector field on $M$ \begin{align*} \xi_M(x) &= \ddtat{t}{}{0} \exp(t \xi) \cdot x && \forall x \in M. \end{align*}

If $H^1(M)$ and $H^2(\liealg{g})$ vanishes, then there is a momentum map $\psi : M \to \liealg{g}^*$ such that the hamiltonian of $\xi_M$ is $\psi^* \xi$ for all $\xi \in \liealg{g}$.

If $H^1(M)$ vanishes, then all closed $1$-forms are exact. The locally hamiltonian vector field $\xi_M$ therefore has a hamiltonian $h=h_{\xi}$. We get a linear map $\Psi : \liealg{g} \to \cinfty{M}$, $\xi \mapsto h_{\xi}$. % We know that $h_{\liebracket{\xi}{\eta}}$ is a hamiltonian of $\liebracket{\xi}{\eta}_M$ and that $\pb{h_{\xi}}{h_{\eta}}$ is a hamiltonian, too. Therefore, \begin{align*} c(\xi, \eta) &= h_{\liebracket{\xi}{\eta}}(x) - \pb{h_{\xi}}{h_{\eta}}(x) \end{align*} is independent of $x \in M$ and so it defines a skew-symmetric $2$-form on $\liealg{g}$. It is closed, and therefore exact, so there is a $\mu \in \liealg{g}^*$ such that \begin{align*} c(\xi, \eta) &= \ip{\mu}{\liebracket{\xi}{\eta}}. \end{align*} If we define \begin{align*} H_{\xi} &= h_{\xi} - \ip{\mu}{\xi}, \end{align*} then $\xi \mapsto H_{\xi}$ is a Lie algebra homomorphism.