MTH-696A: Topics in Geometric Mechanics Assignment 6 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\tlangle{\langle\hspace{-1.1mm}\langle} \def\trangle{\rangle\hspace{-1.1mm}\rangle} \def\dotp#1#2{\tlangle #1, #2 \trangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $L : T\Torus{2} \to \R$ be the kinetic energy of the double pendulum (see assignment 3).
    1. Compute the Euler-Lagrange equations \begin{align*} \ddt{t}{}\didi{L}{\dot{x}_i} &= \didi{L}{x_i}, && x_1=x, x_2=y, \end{align*} for this Lagrangian.
    2. Introduce the coordinates $x=r, y=r+s \pmod 2\pi$. Show that \begin{align*} \ddt{t}{}\didi{L}{\dot{r}} &= 0. \end{align*}

      Planar double pendulum.
      Planar double pendulum.

  2. Let $\Liegp{G}$ be a Lie group and $\liealg{g}$ be its Lie algebra. Suppose that $\Liegp{G}$ acts linearly on $\R^n$; suppose also that $G$ leaves invariant the open subset $M$. Let $L : TM \to \R$ be a smooth Lagrangian function that is constant on the $\Liegp{G}$ orbits: \begin{align*} L(gx, g\dot{x}) &= L(x, \dot{x}), && \forall g \in \Liegp{G}, (x, \dot{x}) \in TM. \end{align*} For each $\xi \in \liealg{g}$, define \begin{align*} f_{\xi}(x, \dot{x}) &= \ip{\didi{L}{\dot{x}}}{\xi x}. \end{align*} Use the Euler-Lagrange equations for $L$ to show that \begin{align*} \ddt{t}{} f_{\xi} & = 0. \end{align*}

  3. Let $\Liegp{G} = \Orth{3}$, $M=\R^3-\set{0}$ and \begin{align*} L &= \frac{1}{2} \norm{\dot{x}}^2 - \frac{1}{\norm{x}}. \end{align*} Show that the functions $f_{\xi}$ you obtain can be regarded as the components of angular momentum.