Navigation |
---|
MTH-696a |
Course outline |
Assignments & Solutions |
Schedule |
Lecture Notes |
Sources |
Home Page of Leo Butler |
This week will look at
Given $A : V \to W$ linear, there is an induced transformation \[ A : \tenalg{*}{V} \to \tenalg{*}{W} \] that preserves the grading and symmetry of a tensor. Given $v \in V$ and $\eta \in \tenalg{k}{V}$, we define \begin{align*} \tenalg{k+1}{A} &: \tenalg{k+1}{V} \to \tenalg{k+1}{W} \\ v \tensorproduct \eta &\mapsto A(v) \tensorproduct \tenalg{k}{A}(\eta) \\ \tenalg{1}{A} &= A. \end{align*}
Here are several facts about the induced transformation
A group $G$ that satisfies
Here is a non-exhaustive list:
Consider the groups:
\begin{align*} \Unitary{1} &= \set{ z \in \C \st \norm{z}=1 } \\ \SOrth{2} &= \set{ \begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix} \st \theta \in \R } \\ \sphere{1} &= \R/\Z. \end{align*}
These Lie groups are Lie group isomorphic.
Consider the groups:
\begin{align*} \Diagonal{n} &= \set{ \diag{z_1, \ldots, z_n} \st \norm{z_1}=\cdots=\norm{z_n}=1} \\ \Delta &= \set{ \diag{R_{\theta_1}, \ldots, R_{\theta_n}} \st R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix}, \theta \in \R } \\ \Torus{n} &= \R^n/\Z^n. \end{align*}
These Lie groups are Lie group isomorphic.