MTH-696A: TOPICS IN GEOMETRIC MECHANICS ASSIGNMENT 4

DR. LEO BUTLER

- **A.** Let $G = O(n; \mathbf{R})$ and let $\mathfrak{g} = \mathfrak{o}(n; \mathbf{R})$ be the Lie algebra of G.
 - (a) Show that \mathfrak{g} can be identified with the skew-symmetric real $n \times n$ matrices with Lie bracket [x, y] = xy yx.
 - (b) Show that the Cartan-Killing trace form $\kappa(x, y) := -\text{Tr}(xy)$ is positive definite on \mathfrak{g} .
- **B.** Let us continue with the notation of the previous question. Let G act on $V = Mat_{n \times n}(\mathbf{R})$ by

$$g \cdot x := gx \qquad \qquad g \in \mathcal{G}, x \in V.$$

- (a) Show that this defines a smooth action of G on V.
- (b) Let

$$\mathbf{x}_k = \mathbf{diag}(\underbrace{1, \dots, 1}_{k \text{ times}}, \underbrace{0, \dots, 0}_{n-k \text{ times}})$$

and let $V_k = \mathbf{G} \cdot \mathbf{x}_k$. Show that the columns of each $x \in V_k$ form an orthonormal basis of a k-dimensional subspace of \mathbf{R}^n . Conversely, for each orthonormal basis $\hat{x} = [x_1, \ldots, x_k]$ of a k-dimensional plane in \mathbf{R}^n , there is a unique $x \in V_k$ whose columns provide the same orthonormal basis. Conclude that V_k can be identified with the set of all orthonormal bases of all k-dimensional subspaces of \mathbf{R}^n . [This manifold is known as the Stiefel manifold of k-frames in \mathbf{R}^n .]

- (c) Show that V_1 is diffeomorphic to \mathbf{S}^{n-1} the unit sphere in \mathbf{R}^n .
- (d) Show that V_2 is diffeomorphic to the unit tangent bundle of \mathbf{S}^{n-1} .
- **C.** Let e_1, \ldots, e_n be the standard basis of $V = \mathbf{R}^n$ and let f_1, \ldots, f_n be the dual basis of V^* . Let $A \in \operatorname{Hom}(V; V)$ be a linear transformation.
 - (a) For an ordered subset I ⊂ {1,...,n}, of cardinality k, let e_I = e_{i1} ∧ ··· ∧ e_{ik}. For k = n − 1, note that there is a bijection between the subsets I and elements i ({i} = I^c). Let φ_i = e_I, using this bijection. Relative to the basis φ₁,..., φ_n, show that he induced linear transformation Λⁿ⁻¹(A) : Λⁿ⁻¹(V) → Λⁿ⁻¹(V) has the matrix

$$C = \begin{bmatrix} C_{11} & \cdots & C_{1n} \\ \vdots & & \vdots \\ C_{n1} & \cdots & C_{nn} \end{bmatrix}$$

where C_{ij} is the determinant of the (i, j) minor of the matrix of A. Let $D_{ij} = (-1)^{i+j} C_{ji}$.

(b) Show that $AD = (\det A)I$.

Date: February 27, 2012.