Topics in Geometric Mechanics: Week 3

Leo Butler

February 1, 2012

The Spherical Pendulum - Homework 2

Figure: Spherical Pendulum.

The Spherical Pendulum - Homework 2 - correction

We let $A: V \to V$ be a linear transformation, $x, y \in V$.

$$\exp(tA) = I + tA + \frac{1}{2}t^2A^2 + \cdots$$
$$\exp(tA) \cdot (x \otimes y) := (\exp(tA)x) \otimes (\exp(tA)y)$$

Recall:

- we looked at classical Newtonian mechanics;
- we looked at some tensor algebra;
- let's continue with some tensor algebra.

Standing Notational Conventions

- V, W are finite-dimensional vector spaces; V*, W* are their duals.
- $T^*(V)$ is the tensor algebra over V with tensor product \otimes .
- S*(V) is the symmetric tensor algebra over V with tensor product .
- A^{*}(V) is the alternating tensor algebra over V with wedge product ∧.
- Hom(V; W) is the vector space of linear transformations $V \to W$.
- Given $v \in V, \phi \in V^*$, define

 $\langle \phi, \mathbf{v} \rangle = \phi(\mathbf{v}).$

Adjoints and Transposes

A linear transformation

$$V \xrightarrow{A} W$$

induces
$$V^* \xleftarrow{A^*} W^*$$

Defined by

 $\langle A^*\phi, v \rangle := \langle \phi, Av \rangle \qquad \phi \in W^*, v \in V.$

$$(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*$$
 $\operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp}$

• For $x \otimes y \in V \otimes V^*$ define

$$\operatorname{Tr}(x \otimes y) := \langle y, x \rangle.$$

- The Tr form extends to a linear function $\operatorname{Hom}(V; V) \cong V \otimes V^* \to F$.
- For $A \in \operatorname{Hom}(V; V)$

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} \langle \phi_i, A e_i \rangle = \sum_{i=1}^{n} \langle A^* \phi_i, e_i \rangle = \operatorname{Tr}(A^*)$$

• The map $A \mapsto \operatorname{Tr}_{A}$ $x \otimes y \mapsto \langle y, Ax \rangle =: \operatorname{Tr}_{A}(x \otimes y)$ is an isomorphism

 $\operatorname{Hom}(V; V)^* \cong \operatorname{Hom}(V; V).$

Volume forms and determinants

- *V* is an *n*-dimensional vector space
- $\Lambda^n(V)$ is 1-dimensional;
- $\Lambda^k(V)$ is $\binom{n}{k}$ -dimensional for $0 \le k \le n$.

Duality

There is a natural dual V* and there are often unnatural duals, too.

Inner products

- V is a vector space with basis e_1, \ldots, e_n
- Define $\Omega = e_1 \wedge \cdots \wedge e_n$
- Let $\eta \in \Lambda^k(V), \rho \in \Lambda^{n-k}(V)$. Define

 $\langle \eta, \rho \rangle := \eta \wedge \rho / \Omega.$