MTH-696A: Topics in Geometric Mechanics Assignment 2 (by Dr. Leo Butler)

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler
  1. Let $M$ be the configuration space of the spherical pendulum.
    1. Let $c : [0,1] \to M$ be a smooth curve. Show directly that the work done by the stiff rod along this curve is zero.
    2. Determine the kinetic and potential energies of a bob of mass $m$, assuming the stiff rod has zero mass.
  2. Let $V$ be an $n$-dimensional vector space, and let $(\tenalg{*}{V},\tensorproduct)$, $(\symalg{*}{V},\symmetricproduct)$ and $(\extalg{*}{V},\extproduct)$ be the tensor, symmetric and exterior algebras of $V$.
    1. Let $v_1, \ldots, v_n$ be a basis of $V$. Show that, for each natural number $k$, the set $$\set{ v_{i_1} \tensorproduct \cdots \tensorproduct v_{i_k} \st 1 \leq i_1, \ldots, i_k \leq n}$$ is a basis of $\tenalg{k}{V}$.
    2. Prove the analogous facts for $\extalg{k}{V}$ and $\symalg{k}{V}$.
    3. Let us say that a $k$-tensor $x$ is irreducible if there are $a_1, \ldots, a_k \in V$ such that $x = a_1 \tensorproduct \cdots \tensorproduct a_k$. Show that for $k = 2$, there are reducible (= not irreducible) tensors. [Remark: this is true for all $k \geq 2$.]
    4. Show that the previous fact is true for both symmetric and skew-symmetric tensors, too.
  3. Let us continue with the notation of the previous question. Say that a linear transformation $L : \tenalg{*}{V} \to \tenalg{*}{V}$ is a derivation if $$L(x \tensorproduct y) = L(x) \tensorproduct y + x \tensorproduct L(y)$$ for all $x, y \in \tenalg{*}{V}$.
    1. Let $A : V \to V$ be a linear transformation and let $\exp(tA) = I + tA + \frac{1}{2} t^2 A^2 + \cdots$ be the exponential. Show that $\ddt{t}{\exp(t A)}|_{t=0}$ induces a derivation of $\tenalg{*}{V}$.
    2. Show that there is a bijection between linear transformations $V \to V$ and derivations of $\tenalg{*}{V}$. [Hint: show that a derivation is uniquely determined by its action on $V$.]
  4. Let $I$ be the $n \times n$ identity matrix and \begin{align*} J &= \begin{bmatrix} 0 & -I\\I & 0 \end{bmatrix} && J : \R^n \oplus \R^n \to \R^n \oplus \R^n, \\ \Symp{\R^{2n}} &= \set{ X \in \Mat{2n}{\R} \st X'JX=J }. \end{align*} Prove that $\Symp{\R^{2n}}$ is a submanifold of $\Mat{2n}{\R}$. [Bonus: show it is a group, too.]

    The spherical pendulum. The bob (in green) moves freely about the pivot $P$.
    The spherical pendulum. The bob (in green) moves freely about the pivot $P$.