Week 5
Last week we looked at Lie groups:
A group $G$ that satisfies
-
$G$ is a smooth manifold
-
Multiplication $\mu : G \times G \to G$ is a smooth map \[ \mu(g_1, g_2) = g_1 \cdot g_2. \]
-
Inversion $\iota : G \to G$ is a smooth map \[ \iota(g) = g^{-1}. \]
Examples of Lie Groups
Here is a non-exhaustive list:
- every finite group
- every discrete group
-
$\R^n$, $\C^n$
-
$\GL{n;\R}$, $\GL{n;\C}$
-
$\Orth{n;\R}$, $\Orth{n;\C}$
-
$\SL{n;\R}$, $\SL{n;\C}$
- every closed subgroup of a Lie group is a Lie group (!)
-
If $G$ is a Lie group and $H \lhd G$ is a closed, normal subgroup, then $G/H$ is a Lie group.
- a finite Cartesian product of Lie groups is a Lie group
Translations and Conjugations
For each $g \in G$, the maps
\begin{align*}
L_g x &= g \cdot x && L_g : G \to G \\
R_g x &= x \cdot g && R_g : G \to G \\
I_g x &= g \cdot x \cdot g^{-1} && I_g : G \to G.
\end{align*}
are diffeomorphisms of $G$.
1-parameter subgroups
Let $\phi : \R \to G$ be a Lie group homomorphism:
-
$\phi$ is a smooth map;
-
$\phi(s+t) = \phi(s) \phi(t)$ for all $s, t \in \R$.
Examples
Here are examples of 1-parameter subgroups:
-
$\phi : \R \to \R$ given by $\phi(t) = t$.
-
$\phi : \R \to \Torus{1}$ given by $\phi(t) = t \bmod \Z$.
-
$\phi : \R \to \R^n$ given by $\phi(t) = t v$.
-
$\phi : \R \to \Torus{n}$ given by $\phi(t) = t v \bmod \Z^n$.
More Examples
Here are examples of 1-parameter subgroups:
-
$\phi : \R \to \GL{\R^n}$ given by $\phi(t) = \exp(t A)$.
-
$\phi : \R \to \C^*$ given by $\phi(t) = e^{t z}$.
1-parameter subgroups
Let $\phi : \R \to G$ be a Lie group homomorphism:
Adjoint action
Let $g \in G$. Define, for $x \in T_1G$,
\begin{align*}
\Ad{g}{x} &= \left.\ddt{t}{}\right|_{t=0} g \exp(tx) g^{-1}, && \Ad{g} : T_1G \to T_1G
\end{align*}
$\Ad{g} = \Dat{1}{I_g}$.
adjoint action
For $x \in T_1G$, define
\begin{align*}
\ad{x}{y} &= \left.\ddt{t}{}\right|_{t=0} \Ad{\exp(tx)}{y} && \ad{x}{} : T_1G \to T_1G.
\end{align*}
Left- and Right-Invariant Vector Fields
-
We define a vector field $X$ on $G$ to be left-invariant if $X(g) = \Dat{1}{L_g} X(1)$ for all $g \in G$.
-
We define a vector field $X$ on $G$ to be right-invariant if $X(g) = \Dat{1}{R_g} X(1)$ for all $g \in G$.
-
An invariant vector field is determined by its value at $1$.
-
Let $\liealg{g}_{\pm}$ be the set of right/left invariant vector fields on $G$.
Lie Bracket
-
Define the Lie bracket of vector fields $X, Y$ to be in local coordinates $q^i$
\begin{align*}
\liebracket{X}{Y} &= X \circ Y - Y \circ X = \sum_{i, j} X^j \didi{Y^i}{q^j} \didi{\ }{q^i} - Y^j \didi{X^i}{q^j} \didi{\ }{q^i}
\end{align*}
-
Example: $X(q) = Aq$ and $Y(q) = Bq$ for $q \in \R^n$. Then
\begin{align*}
\liebracket{X}{Y}(q) &= -(AB-BA)q
\end{align*}
-
Example: $G = \GL{R^n}$ and $T_gG = \Mat{n}{\R}$. The vector fields $X(g) = gA$ and $Y(g) = gB$ are left-invariant.
\begin{align*}
\liebracket{X}{Y}(g) &= g(AB-BA).
\end{align*}