Topics in Geometric Mechanics: Week 10

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\CP{\C{}P} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\Trce#1{\mathrm{Tr}(#1)} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} \def\cinfty#1{C^{\infty}(#1)} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} \def\pb#1#2{\left\{{#1},{#2}\right\}} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\tlangle{\langle\hspace{-1.1mm}\langle} \def\trangle{\rangle\hspace{-1.1mm}\rangle} \def\dotp#1#2{\tlangle #1, #2 \trangle} \def\interiorproduc#1#2{\iota_{#1}{#2}} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\dndtn#1#2#3{\frac{d^{#3}{#2}}{d{#1}^{#3}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\dindin#1#2#3{\frac{\partial^{#3}{#1}}{\partial{#2}^{#3}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} \def\imagpart#1{\mathrm{Im}(#1)} \def\realpart#1{\mathrm{Re}(#1)} \def\equivclass#1{\left[#1\right]} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Tutorials & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Week 10

We left off with:

Volume Preservation

If $X$ is a Hamiltonian vector field with Hamiltonian function $H$, then $H$ is constant along flow lines, the volume form $\Omega^n$ is preserved and the restriction of $V = \alpha \wedge \Omega^{n-1}$ to $H^{-1}(c)$ is preserved, where $\alpha$ is a smooth $1$-form on a nhd of $H^{-1}(c)$ such that $\interiorproduc{X}{\alpha}=1$.

$H$ is constant along flow lines: $$ \lieder{X}{H} = \ip{\D{H}}{X} = \Omega(X, X) = 0, $$ since $\Omega$ is skew symmetric. $\Omega^k$ is preserved since $$\lieder{X}{\Omega^k} = (\lieder{X}{\Omega^{k-1}}) \wedge \Omega + \Omega^{k-1} \wedge \lieder{X}{\Omega}.$$ Finally, since $\interiorproduc{X}{\alpha} = 1$ near $H^{-1}(c)$, $\lieder{X}{\alpha}$ annihilates $X$ so \begin{align*} \lieder{X}{V} &= (\lieder{X}{\alpha}) \wedge \Omega^{n-1} && \text{since $\Omega^{n-1}$ is preserved}\\ &= f \D{H} \wedge \Omega^{n-1}. \end{align*} Note that $V$ is independent of the choice of $\alpha$.

Poisson Algebras

A Poisson algebra $(A, \cdot, \pb{}{})$ where $(A, \cdot)$ is an abelian algebra, and $(A, \pb{}{})$ is a Lie algebra s.t. \begin{align*} \pb{f}{g \cdot h} &= \pb{f}{g} \cdot h + g \cdot \pb{f}{h} && \forall f, g, h \in A. \end{align*}

Examples

First, \begin{align*} X_{\pb{f}{g}} &= \liebracket{X_f}{X_g}. \end{align*} Second, \begin{align*} & \pb{f}{\pb{g}{h}} + \pb{g}{\pb{h}{f}} + \pb{h}{\pb{f}{g}} \\ &= \lieder{X_f}{\lieder{X_g}{h}} - \lieder{X_g}{\lieder{X_f}{h}} - \lieder{X_{\pb{f}{g}}}{h} \\ &= \lieder{\liebracket{X_f}{X_g}}{h} - \lieder{X_{\pb{f}{g}}}{h} \\ &= 0. \end{align*} Third, \begin{align*} \pb{f}{g \cdot h} &= \lieder{X_f}{g \cdot h} = (\lieder{X_f}{g}) \cdot h + g \cdot (\lieder{X_f}{h})\\ &= \pb{f}{g} \cdot h + g \cdot \pb{f}{h}. \end{align*}

Subalgebras

Let $(M, \Omega)$ be $T^* \R^n$ with its canonical Poisson structure: \begin{align*} \pb{f}{g} &= \ip{\didi{f}{p}}{\didi{g}{x}} - \ip{\didi{f}{x}}{\didi{g}{p}}. \end{align*}

The vector space of quadratic hamiltonians is a Poisson subalgebra.

Let $z=(x, p)$. Relative to this, we can write the Poisson bracket as \begin{align*} \pb{f}{g} &= \dotp{J \nabla f}{\nabla g}, && J = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}. \end{align*} Let $f(z) = \frac{1}{2} \dotp{Az}{z}$, $g(z) = \frac{1}{2} \dotp{Bz}{z}$ for some $2n \times 2n$ symmetric matrices $A, B$. Then \begin{align*} \pb{f}{g} &= \dotp{J Az}{Bz} = \frac{1}{2} \dotp{Cz}{z}, && C=BJA-AJB. \end{align*}

The Symplectic Group Action

Let $\Symp{\R^{2n}}$ be the group of linear transformations that preserve $\Omega$. We have the actions \begin{align*} (g, z) &\mapsto gz \in \R^{2n} && g \in \Symp{\R^{2n}}, z \in \R^{2n}\\ (\xi, z) &\mapsto \xi z \in T_z\R^{2n} && \xi \in \symp{\R^{2n}}, z \in \R^{2n}. \end{align*}

Let $\symalg{2}{\R^{2n}}$ be the Poisson algebra of quadratic hamiltonians on $\R^{2n}$. Define \begin{align*} \psi : \symp{\R^{2n}} \to \symalg{2}{\R^{2n}} &&& \xi \mapsto f_{\xi}(z) = \frac{1}{2} \dotp{J\xi z}{z}. \end{align*} Then $\psi$ is a Lie algebra isomorphism.

First, $\xi \in \symp{\R^{2n}}$ implies that $J \xi = (J \xi)'$. Second, if $\xi, \eta \in \symp{\R^{2n}}$, then \begin{align*} \pb{f_{\xi}}{f_{\eta}}(z) &= \frac{1}{2} \dotp{Cz}{z} \\ &\text{where} && C = (J \eta)J(J \xi) - (J \xi)J(J \eta) = J\liebracket{\xi}{\eta}\\ &= f_{\liebracket{\xi}{\eta}}(z). \end{align*} This shows that $\psi : \xi \mapsto f_{\xi}$ is a Lie algebra homomorphism; it is clearly one-to-one. To see it is onto, let $A=A'$ and define $\xi = JA$. Then $\xi' J + J \xi = 0$, so $\xi \in \symp{\R^{2n}}$.

Let's note that $X_{f_{\xi}} = J(J\xi z) = - \xi z$.

Momentum map

Let $\liealg{g}$ be a Lie algebra, and $\liealg{h}$ a Lie algebra of smooth hamiltonians on $(M, \Omega)$. An homomorphism \begin{align*} \Psi &: \liealg{g} \to \liealg{h} && \xi \mapsto h_{\xi} \\ \text{induces}\\ \psi &: M \to \liealg{g}^* && \ip{\psi(x)}{\xi} = h_{\xi}(x). \end{align*}

Examples

  1. For $\liealg{g} = \symp{\R^{2n}}$, $\liealg{h} = \symalg{2}{\R^{2n}}$ from above, \begin{align*} \psi(z) &= \frac{1}{2} zz'J && \psi : \R^{2n} \to \symp{\R^{2n}}^* \equiv \symp{\R^{2n}}. \end{align*}
  2. For $\liealg{g} = \sorth{\R^n}$ acting on $\R^{2n} = T^*\R^n$, \begin{align*} \psi(z) &= \frac{1}{2} (px' - xp') && \psi : \R^{2n} \to \sorth{\R^n}^* \equiv \sorth{\R^n}. \end{align*}