Previous: Sort mode, Up: Command-line use


1.1.5 Test mode

There is an internal testing mode that verifies kspace_t has been built correctly.

     ./kspace_t -t -n 3 -mpfr_precision=230 --infile=cez.txt

This command yields the output below. The fifth tests tells you that KSPACE has computed values that are within 3e-69, or 2 bits, of the rational values contained in the tables listed in cez.txt.

     Coprimality tests...                    pass/fail/total: 4/0/4
     Initialisation of preKspace class...    pass/fail/total: 2/0/2
     I/O tests:                              pass/fail/total: 4/0/4
     <,== tests:                             pass/fail/total: 75/0/75
     CEZTest::test() epsilon=2.31825e-69 2.31825e-69 2.31825e-69 2.31825e-69 2.31825e-69 2.31825e-69
                                             pass/fail/total: 200/0/200
     qsort tests...                          pass/fail/total: 4/0/4
     Totals:                                 pass/fail/total: 289/0/289

The file cez.txt contains information on the files to read in and the tests to perform. The first column specifies the type of the classification, as specified by the command-line option --type (see command-line options). The second column specifies the number of bits of precision that can be lost in computing the rational Kreck-Stolz invariants. The third column specifies the name of the text files where the test data is found.

2 2 cez_table4_1.txt
0 2 cez_table4_2.txt
0 2 cez_table4_3.txt
2 2 cez_table4_4.txt
0 2 cez_table4_5.txt
0 2 cez_table4_6.txt

The content of each of the files listed in cez.txt is a table from Chinburg, Escher and Ziller (2007), up to the addition of the sign on r and, where noted, the sign on s22 is changed from that reported. The differences are due to the different ways in which the invariants are reduced mod 1.

Table 4_1 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s       s22     p1
40	21	21	20	20	0	-43 	21	-1/6	26 # sum k0 k1 l0 l1 c r s s22 p1
10	8	7	6	4	0	-43 	21	-1/6	13
98	50	50	49	49	0	-101	50	-1/6	55
14	12	10	9	5	0	-101	50	-1/6	21
134	68	68	67	67	0	-137	68	-1/6	73
29	19	17	16	13	0	-137	68	-1/6	23
22	16	16	13	9	0	-181	-26	-1/6	85
50	30	26	25	25	0	-181	26	1/6	164
84	45	43	42	42	0	-181	43	0/1	89
18	15	14	12	6	0	-181	43	0/1	35  # end of table 4.1 (sign of r corrected 18-10-2008)

Table 4_2 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s       p1      s1              s2
78	79	49	46	32	0	-4001 	-1502	3336	49741/112028	-1043/8002
78	75	54	46	32	0	-4001 	1502	3336	1877/8002	1043/8002
36	71	59	34	2	0	-8099 	3085	2184	-1055/9968	-6975/32396
54	92	47	38	16	0	-8099 	-3085	2184	-4285/9968	6975/32396
30	83	43	24	6	0	-8671 	4216	936	-941/10672	-11343/34684
42	97	33	24	18	0	-8671 	-4216	936	-1417/74704	11343/34684
114	104	96	81	33	0	-9889 	1719	65	2961/79112	9505/39556
129	109	101	81	48	0	-9889 	-1719	65	275943/553784	-9505/39556
204	144	136	135	69	0	-11011	-1899	5320	31695/176176	-6767/22022
228	152	144	129	99	0	-11011	-1899	5320	12819/176176	-6767/22022 # CEZ table 4.2 (sign of r corrected 18-10-2008)

Table 4_3 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s       p1      s1              s2
177	145	121	113	64	0	-13361	1732	5905	-272959/748216	6839/53444 
195	151	127	104	91	0	-13361	-1732	5905	272959/748216	-6839/53444
150	154	154	135	15	0	-26973	2119	5877	-6131/18648	123965/323676
705	389	383	357	348	0	-26973	-2119	5877	6131/18648 	-123965/323676
114	185	115	102	12	0	-35749	10989	18648	-9018/35749	8920/35749 
186	230	111	108	78	0	-35749	10989	18648	-9018/35749	8920/35749 
153	205	141	114	39	0	-42319	7443	20142	-73317/677104	4123/84638 
153	191	157	114	39	0	-42319	-7443	20142	73317/677104	-4123/84638 # CEZ table 4.3 (sign of r corrected 18-10-2008)

Table 4_4 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s       s22     p1
320	316	3	320	0	0	1267	-319	-1/3	813  # CEZ table 4.4 (sign of s22 corrected 18-10-2008) on lines with #
62	25	19	62	0	0	1267	-319	-1/3	86   #
188	181	5	188	0	0	1277	533	-1/6	453  #
70	44	19	70	0	0	1277	-533	1/6	861  #			     
780	778	1	780	0	0	1557	778	-1/6	783  #
150	139	7	150	0	0	1557	778	-1/6	1404 #
402	398	3	402	0	0	1595	-401	0/1	1018				     
72	36	23	72	0	0	1595	-401	0/1	798
120	105	11	120	0	0	1619	-237	0/1	1277
144	132	7	144	0	0	1619	-237	0/1	997  ## sum k0 k1 l0 l1 absr s s22 p1

Table 4_5 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s       p1      s1                      s2
336	171	164	336	0	0	28379	-335	27139	-82869/3178448		-2393/56758
336	223	60	336	0	0	28379	-335	27139	-1104513/3178448	-2393/56758
690	362	291	690	0	0	129503	12564	45679	69409/14504336		-80901/259006
690	423	169	690	0	0	129503	12564	45679	5767541/14504336	-80901/259006
1092	717	362	1092	0	0	273581	91230	196280	-393315/1094324		370663/1094324
1092	761	241	1092	0	0	273581	91230	196280	310179/1094324		370663/1094324
1302	891	368	1302	0	0	382025	-35741	334208	-74669/436600		-294993/1528100
1302	928	191	1302	0	0	382025	-35741	334208	1442017/3056200		-294993/1528100
1614	1265	347	1614	0	0	442179	-6448	346023	-173889/611408		115166/1326537
1614	1274	311	1614	0	0	442179	-6448	346023	-21037/611408		115166/1326537

Table 4_6 of Chinburg, Escher and Ziller (2007):

#sum    k0      k1      l0      l1      c       r       s               p1      s1                      s2
4266	2279	1603	4266	0	0	5143925	-1448517	390037	-37291099/144029900	36777/4115140
4266	2528	939	4266	0	0	5143925	-1448517	390037	-37291099/144029900	36777/4115140