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Abstract. This paper has four main results: (i) it shows that left-invariant

geodesic flows on a broad class of 2-step nilmanifolds – which are dubbed

almost non-singular [22, 39] – are integrable in the non-commutative sense

of Nehoros̆ev; (ii) the left-invariant geodesic flows on all Heisenberg-Reiter

nilmanifolds are Liouville integrable [40]; (iii) the topological entropy of a

left-invariant geodesic flow on a 2-step nilmanifold vanishes; (iv) there exist

2-step nilmanifolds with non-integrable left-invariant geodesic flows. It is also

shown that for each of the integrable hamiltonians investigated here, there is a

C2-open neighbourhood in C2(T ∗M) such that every integrable hamiltonian

vector field in this neighbourhood must have wild first integrals.

1. Introduction

Riemannian geometry and hamiltonian mechanics intersect in the study of the

geodesic flow of a riemannian metric. The dynamics of a geodesic flow can be both

complicated enough to model many aspects of even more complicated hamiltonian

systems, and simple enough to understand the geodesic flow’s phase portrait – or

at least important aspects of it. Since the 1970s, many new integrable dynamical

systems have been discovered, amongst which are the Euler equations of a left-

invariant metric on a semi-simple Lie group [42, 46, 3, 4] and geodesic flows on
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certain quotients of compact, semisimple Lie groups [54, 31, 32, 11]. By contrast,

little is known about the integrability of geodesic flows on compact quotients of

nilpotent or solvable Lie groups or even the integrability of their Euler equations

(see [9, 12, 14, 13, 16] however).

1.1 Integrable Geodesic Flows on a Class of Two-step Nilmanifolds: This paper

studies left-invariant geodesic flows on two classes of 2-step nilpotent Lie groups

and their compact quotients. The former class is called almost non-singular after

Eberlein’s [22] analogous definition of non-singular 2-step nilpotent Lie groups, and

was first studied by Lee and Park in [39]. The latter class consists of the so-called

Heisenberg-Reiter (HR) groups, which generalize the classical Heisenberg group.

Two-step nilpotent Lie groups are the “simplest” non-abelian Lie groups and their

compact quotients – two-step nilmanifolds – are also deceptively “simple.” Despite

this, these groups and manifolds possess geometric properties quite unlike their

abelian counterparts and have been studied intensively by geometers in [36, 2, 29,

22, 23, 44, 39]. These papers have principally addressed the connection between the

length spectrum of the geodesic flow and the spectral properties of the associated

laplacian. This paper studies these geodesic flows from the point-of-view of the

hamiltonian formalism. The first results are:

Theorem 1.1. (i) If G is a connected, simply connected 2-step nilpotent Lie group

whose Lie algebra G is almost non-singular and rational, then for each discrete

subgroup D ≤ G and each left-invariant riemannian metric g on G, the geodesic

flow of g is smoothly integrable on T ∗(D\G) in the non-commutative sense of Ne-

horos̆ev [48].

(ii) If G is a connected, simply connected 2-step nilpotent Lie group whose Lie

algebra G is rational and HR (see 2.21), then for each discrete subgroup D ≤ G and

each left-invariant riemannian metric g on G, the geodesic flow of g is smoothly

Liouville integrable on T ∗(D\G).

The definition of non-commutative integrability and Nehoros̆ev’s theorem is recalled

below. The geodesic flows in theorem 1.1 are real analytic, while the first integrals

are only C∞. The next section attempts to explain why:
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1.2 Wild First Integrals: Before we explain the notion of a tame/wild map, let

us recall a related notion that frequently appears in the literature on integrable

systems: non-degenerate integrability.

To explain non-degenerate integrability, suppose that (M 2n, ω) is a symplectic

manifold with the hamiltonian action of the abelian Lie group A ' Rn and F :

M2n → a
∗ is the momentum map of A’s action (a = Lie(A)), which is a submersion

on an open dense set. For each m ∈M , let Km be the linear space of hamiltonians

f = 〈F, ξ〉, ξ ∈ a, such that dfm = 0. Let Qm = {d2fm : f ∈ Km}. Finally,

let Lm = TmA.mω be the ω-orthogonal complement to the tangent space to A’s

orbit through m. Then Lm/L
ω
m is a symplectic vector space, and Qm induces an

abelian subalgebra of linear hamiltonian vector fields on Lm/L
ω
m, call it Sm. We

say that A’s action is non-degenerate if dimSm = 1
2 dimLm/L

ω
m for all m ∈ M .

dimQm = dimKm for all m ∈ M [55, 20, 19, 24, 35, 49]. A hamiltonian system

is non-degenerately integrable if it is Liouville integrable and its integrals generate

a non-degenerate action of Rn. Note that the non-degeneracy of A’s action is

equivalent to dimQm = dimKm for all m; this shows that the condition is really a

condition on the singular set of the momentum map.

Eliasson, Dufour-Molino and Ito [24, 20, 35] demonstrate that a non-degenerately

integrable system admit singular action-angle variables in a neighbourhood of so-

called elliptic singular strata of the first-integral map. Paternain [49] shows that the

topological entropy of a non-degnerately integrable system must vanish, and has

asked if non-degenerately integrable systems are generic (in the space of integrable

systems) much like Morse functions are generic.

In the the 2-degree-of-freedom setting, Fomenko and his collaborators have called

non-degenerately integrable systems Bott integrable and an extensive classification

theorem has been deduced [25, 26]. One justification for studying this restricted

class of integrable hamiltonian vector fields is that most known integrable mechan-

ical systems are Bott-integrable [27, 38, 37, 5].

Subsequent to the development of a classification theorem for Bott-integrable

hamiltonian vector fields on four-dimensional symplectic manifolds, Fomenko and

Matveev [45] demonstrated that the types of bifurcations or surgeries of Liouville

tori encountered with tame first integrals is no larger than the bifurcations encoun-

tered in Bott-integrable 4-dimensional systems. In their definition, a smooth map is

tame if there is a triangulation of the singular set that extends to a neighbourhood.
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We will adapt this definition: a smooth map F : M → N induces a stratifica-

tion of N by strata Sk := {F (m) : rank dFm = k} and M is stratified by sets

Ck = F−1(Sk). The map F is tame if C ⊂ M is a tamely embedded polyhedron

and (S, F (M)) are simulaneously triangulable; it is wild otherwise. By a theorem of

Hardt on the triangulability of images of proper real-analytic maps [33, 34], a real-

analytically integrable geodesic flow on a compact manifold has a tame first-integral

map [52].

Let I(T ∗M) ⊂ C2(T ∗M ; R) denote the set of C2 integrable hamiltonians on

T ∗M . Let us say that H ∈ I(T ∗M) is tamely integrable if it has a proper first-

integral map J : T ∗M → Rm such that J is a tame map. Then:

Theorem 1.2. Let Q be the set of compact real-analytic manifolds defined in the-

orem 1.1. Then for each M ∈ Q:

(i) T ∗M possesses an integrable metric hamiltonian with a C∞ first-integral map;

(ii) if H ∈ C2(T ∗M ; R) is an integrable mechanical hamiltonian, then there is a

C2-open neighbourhood of H in I(T ∗M), call it UH , such that if F ∈ UH then F

is not tamely integrable.

In particular, we see that on the class of smooth manifolds studied here the

geodesic flows are not tamely integrable, and they are not even C2 close to a

tamely integrable hamiltonian system.

It is important to stress that Theorem 1.2 does not state that there do not exist

non-degenerately integrable mechanical hamiltonians on the cotangent bundles of

the manifolds in question — although this is almost certainly true. Desolneux-

Moulis [19] observed that the first-integral map of a non-degenerately integrable

system induces a Whitney stratification of the phase space, which implies the map’s

singular set is tamely embedded. However, it is unclear if this is sufficient for tame-

ness of the first-integral map. The basic difficulty in proving tameness is establishing

that the induced stratificaction of the image satisfies the strong “control” hypothe-

ses required (see [51]).

1.3 The Liouville Foliation: Given a flow φt : X → X , there are natural stratifi-

cations of X induced by the Ck first integrals of φt: Fk = X/ ∼ where x ∼ y

iff for all Ck first integrals, f , of φt the point y lies in the connected component

of f−1(f(x)) containing x. If φt is an integrable system with first-integral map
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F : X → Rm, then we call the singular foliation of X whose leaves are the con-

nected components of the level sets of F the Liouville foliation of φt associated to

F . In general, this foliation depends on the particular choice of first-integral map.

However, this foliation does contain a great deal of information about the dynami-

cal behaviour of φt and in the case where we consider only the regular fibres of F

and φt is anisochronous – the trajectories of φt are generically dense quasi-periodic

windings on the regular fibres of F – then the foliation is essentially independent of

F . In section 4 the Liouville foliation of an integrable geodesic flow on quotients of

the 2n+ 1-dimensional Heisenberg group is studied, and it is shown that the mon-

odromy of the Liouville foliation reflects the algebraic structure of the fundamental

group quite strongly. Specifically:

Theorem 1.3. Let D ≤ G be a discrete, cocompact subgroup of the 2n + 1-

dimensional Heisenberg group G, let D have the presentation: D = 〈w1, . . . , wn,

v1, . . . , vn, z : [wi, vj ] = zδijki for all i, j = 1, . . . , n, [z, .] = 1〉 where kj are positive

integers such that k1| · · · |kn, and let F � D be the normal subgroup generated by

v1, . . . , vn, z.

Let Ψ : Sr → R×Rn
>0×Tn be the fibration of the dense, open subset Sr of T ∗(D\G)

by the Liouville tori of an integrable, left-invariant geodesic flow on T ∗(D\G). The

bundle Ψ has the monodromy group isomorphic to D/F ' Zn. The action of wiF

on a privileged basis [Cj ], j = 1, . . . , 2n+ 1, of 1 cycles of the fibres of Ψ is given

by:

(1) wiF ∗ [Cj ] = [Cj ] + δijki[Cn+1]

In particular, there do not exist global action-angle coordinates of Ψ : Sr → R ×
Rn

>0 × Tn.

One way to interpret this result is that the monodromy in the Liouville foliation

causes the geodesic flow to be integrable with smooth but not tame first integrals.

Indeed, the singular fibres of the first-integral map J : T ∗(D\G) → R2n+1 (see

section 4) consist of three types of fibres: the first type have a neighbourhood dif-

feomorphic to Tl[θ] × D2k[p] × Dl[I ], where l + k = 2n + 1, and the first integral

map Ψ(θ, p, I) = (p2
1 + p2

2, . . . , p
2
2k−1 + p2

2k, I), i.e. there exist singular action-angle

variables in a neighbourhood of the type I singular fibres; the type II singular fibres

are invariant lagrangian 2n + 1-dimensional tori; and the type III singular fibre

consists of the zero set of the momentum map of the action of Z(G)/Z(D) ' T1
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on T ∗(D\G). The type III singular fibre is a 4n + 1-dimensional submanifold of

T ∗(D\G), and the type II singular fibres accumulate onto it. The type III fibre

is itself fibred into invariant lagrangian 2n + 1-dimensional submanifolds each of

which is diffeomorphic to D\G. It appears that the action of the monodromy group

makes it possible for the topology of the type II singular fibres to change in the

limit as they accumulate on the type III fibre.

1.4 The Vanishing of Topological Entropy: A second concern in the theory of dy-

namical systems is the relationship between the topological entropy of a flow and

its integrability. In essence, the topological entropy of a flow measures the supre-

mum of the rate of growth of separation of initially nearby solution curves. For an

integrable system, there is a dense set fibred by invariant Liouville tori on which

the topological entropy vanishes. However, in [9] Bolsinov and Tăımanov give an

example of a solvmanifold with an integrable geodesic flow and show that the sin-

gular set of this flow’s first-integral map contains an invariant set on which the

topological entropy of the flow is positive. Loosely speaking, integrable behaviour

is not incompatible with chaotic behaviour. This paper shows that left-invariant

geodesic flows on all 2-step nilmanifolds have zero topological entropy. Specifically,

this paper proves:

Theorem 1.4. Let G be a connected, simply connected, rational 2-step nilpotent

Lie group and D ≤ G be a discrete, cocompact subgroup of G. If g is a left-invariant

metric on G and Φt is the geodesic flow induced by g on T ∗(D\G) then

htop(Φ) = 0.

1.5 Non-integrable Geodesic Flows on a Two-step Nilmanifold: The class of two-

step nilmanifolds is rich in another important way: not only do some manifolds

admit integrable left-invariant geodesic flows, but some do not, also:

Theorem 1.5. Let G3 be the non-trivial extension of Λ2(R3) by R3 given by

[x+ y, x′ + y′] := x ∧ x′,

for all x, x′ ∈ R3 and y, y′ ∈ Λ2(R3). Let G3 be the associated connected, simply

connected 2-step nilpotent Lie group. Then for each discrete cocompact subgroup

D ≤ G3 there is a left-invariant metric g such that the geodesic flow of g on

T ∗(D\G3) is non-integrable.
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The proof of theorem (1.5) does not use the standard Poincaré-Melnikov method [30]

– in light of theorem (1.4) it does not work! Instead, the periodic geodesics of g

are studied directly and it is shown that these periodic geodesics carry enough al-

gebraic structure to show that no locally trivial, flow-invariant foliation by tori can

exist. It should also be noted every left-invariant geodesic flow is non-integrable

on T ∗(D\G3), where D is discrete and cocompact. In fact, this is true for a wide

class of 2-step nilmanifolds whose universal covering group G satisfies the algebraic

condition that for µ ∈ G∗, there exists a µ′ ∈ G∗ arbitrarily close to µ such that

the stabilizers Gµ and Gµ′ do not commute. The proof of this latter claim is more

involved and will appear elsewhere (see [18]).

1.1. Outline. The plan of this paper is: section 2 proves theorem 1.1; section 3

proves theorem 1.2; section 4 studies the Liouville foliation of an integrable geodesic

flow on T ∗(D\G) where G is the Heisenberg group and proves theorem 1.3; section

5 demonstrates theorem 1.4; section 6 proves theorem 1.5.

1.2. The Nehoros̆ev Theorem. The theorem of Nehoros̆ev is recalled [48]:

Theorem 1.6 (Nehoros̆ev, 1972). Let F = (H = f1, . . . , fn−k, g1, . . . , g2k) be a

smooth map on the symplectic manifold (M 2n,Ω), k ≥ 0, that satisfies the three

conditions:

i) rank dF = n+ k on an open, dense subset of M 2n;

ii) for all a, b = 1, . . . , n− k and all c = 1, . . . , 2k: {fa, fb} = {fa, gc} = 0;

iii) for each regular value c ∈ Rn+k, each connected component of F−1(c) is

compact.

If c ∈ Rn+k is a regular of F and V ⊂ F−1(c) is a connected component of the

level set, then V is an embedded n − k-dimensional torus and there is an open

neighbourhood U of V with local coordinates f : U → Rn−k[I ] × Tn−k[θ] × Rk[p] ×
Rk[q] such that

i) the local coordinates are canonical:

Ω|U = f∗(
n−k
∑

i=1

dIi ∧ dθi +

k
∑

j=1

dpj ∧ dqj);

ii) for a = 1 . . . , n− k, fa = f̃a ◦ f and f̃a = f̃a(I);
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iii) The flow of XH is conjugate to a translation-type flow on Tn−k:

XH̃ =







İi = 0, ṗj = 0,

θ̇i = ∂H̃(I)
∂Ii

, q̇j = 0.

Remark 1.7. A hamiltonian H that satisfies the hypotheses of the above theorem

will be referred to as integrable in the non-commutative sense of Nehoros̆ev or simply

integrable. It is clear that when k = 0, one gets the Liouville-Arnold theorem [1].

2. Two-Step Nilpotent Lie Groups

Let G be a 2-step nilpotent Lie algebra with center Z = Z(G), so that [G,G] ⊂
Z(G), let 〈, 〉 be an inner product on G and let

G = H⊕Z ,

be an 〈, 〉-orthogonal decomposition of G. The Lie bracket on G is written as [x +

y, x′ + y′] = [x, x′] for all x, x′ ∈ H and y, y′ ∈ Z , and so the commutator defines a

skew-symmetric, bilinear form ω : H×H → Z by ω(x, x′) = [x, x′].

The Lie algebra G can also be given the structure of a Lie group (G, ∗) byX∗Y :=

X + Y + 1
2 [X,Y ], so that G = Lie(G) and the exponential map is the identity. In

the sequel, elements in G will often be viewed as elements in G under the inverse

(logarithm) map – which is the identity map in these coordinates. If D is a discrete,

cocompact subgroup of G then there exists a generating set X1, . . . , Xh, Y1, . . . , Yz

where Y1, . . . , Yz generate Z(D) and the cosets X1 +Z(D), . . . , Xh +Z(D) generate

D/Z(D) and h = dimH, z = dimZ [41]. The generating set therefore determines

a basis of G and an inner product 〈, 〉′ relative to which it is an orthonormal basis.

Lemma 2.1. Let D ≤ G be a discrete, cocompact subgroup and let (, ) be an inner

product on G. Then there exists an automorphism f : G → G and a subgroup

D′ = f−1(D) with generators X1, . . . , Xh, Y1, . . . , Yz such that (Xi, Yj) = 0. In

addition, if g is the left-invariant metric on G determined by (, ), then (D′\G, f∗g)

is isometric to (D\G, g).

Proof: Let G = H ⊕Z be the 〈, 〉-orthogonal decomposition of G. Let a(x) be the

(, )-orthogonal projection of x ∈ H onto Z . The map F : x+y → x−a(x)+y for all

x ∈ H and y ∈ Z is an automorphism of G; let f = exp ◦F ◦ log be the map induced

by F on G; f is an automorphism and by construction F (H) is (, )-orthogonal to

Z . 2
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This lemma is proven in [29] for Heisenberg groups. The importance of this

lemma is that, by fixing a discrete, cocompact subgroup D with a fixed generating

set, attention can be confined to those metrics that are block diagonal relative to

this fixed basis of G. Here and henceforth, 〈, 〉 will be a fixed inner product on G
relative to which G = H⊕Z , D will be a discrete, cocompact subgroup of G with

〈, 〉-orthonormal generating set X1, . . . , Xh,Y1, . . . , Yz, H = spanR{X1, . . . , Xh} and

Z = spanR{Y1, . . . , Yz} and (, ) will be a second inner product that is block diagonal:

for all X,X ′ ∈ H and Y, Y ′ ∈ Z

(2) (X + Y,X ′ + Y ′) = 〈X,AX〉 + 〈Y,BY ′〉

where Aij = (Xi, Xj) and Bkl = (Yk , Yl). The metric g on G will be the left-

invariant metric determined by (, ) or equivalently the pair A, B.

Lemma 2.2. Let D ≤ G be a discrete, cocompact subgroup with generators X1, . . . , Xh,

Y1, . . . , Yz. Let (x, y) = (xiXi, y
jYj) be coordinates of a point in G. Then Xl ∗

(x, y) = (x+Xl, y+ 1
2 [Xl, x]) and Yk ∗ (x, y) = (x, y+Yk); that is: xi ◦Xl = xi +δi

l ,

xi ◦ Yk = xi, yj ◦Xl = yj + 1
2ω

j
lαx

α and yj ◦ Yk = yj + δj
k.

2.1. Geodesic equations of motion. Let A : Z∗ → so(H) be defined for all

x, x′ ∈ H and q ∈ Z∗ by 〈x,A(q)x′〉 := q ◦ [x, x′]. Let (x, y, p, q) be the coordinates

of a point in T ∗G = H × Z ×H∗ × Z∗ via left trivialization. The hamiltonian of

the metric g on T ∗G is Hg = 1
2 〈p,Rp〉 + 1

2 〈q, Sq〉 where R = A−1 and S = B−1.

The equations of motion are

(3) XHg
=







q̇ = 0, ẏ = Sq + 1
2 [x,Rp],

ṗ = −A(q)Rp, ẋ = Rp.

Then q is a Z∗-valued first integral of XHg
and F := p + A(q)x is an H∗-valued

first integral. Let qi := q(Yi) and Fj := F (Xj) for i = 1, . . . , z and j = 1, . . . , h.

2.2. First integrals. Let R
1

2 denote the unique positive definite square root of R,

and let v = R
1

2 p and B(q) := R
1

2A(q)R
1

2 . Then v̇ = −B(q)v. Let κ be −1 times

the Killing form on so(H) and let L : q → adB(q) be the map Z∗ → so(so(H)).

If r is the maximal rank of L(q), then the set of q such that rank L(q) = r is

open and dense in Z∗; call this set Z∗
r . Let so(H) = C(q)⊕F (q) be the eigenspace

decomposition relative to L(q), where C(q) = kerL(q) and F (q) is the [, ]-orthogonal

complement, which is L(q)-invariant.
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Lemma 2.3. There exist smooth sections Z∗ → so(H), q → Ci(q) ∈ C(q), i =

1, . . . , s such that C1(q), . . . , Cs(q) is a basis of C(q) for an open, dense set of

q ∈ Z∗
r .

Proof: Define the “centralizer bundle” to be the bundle C → Z∗ with fibre C(q) over

q ∈ Z∗; this bundle is naturally a sub-bundle of the trivial bundle so(H)×Z∗ → Z∗

and consequently there is a natural norm |.| on the fibres of C induced by κ.

When restricted to Z∗
r , C|Z∗

r
is a real-analytic vector bundle of rank s, where

s = 1
2h(h−1)−r is the generic dimension of C(q). Consequently, there exists s real-

analytic sections of C|Z∗
r

that are linearly independent over an open, dense subset

of Z∗
r ; let these be denoted by S1, . . . , Ss. Let φ(x) := exp(−1/x2) and let m(q) be

the sum of all squared r×r minors of L(q) and let k(q) := Πs
i=1 φ(|Si(q)|)|Si(q)|−1.

It is clear that φ ◦m and k extend to smooth functions on Z∗ that are non-zero on

an open, dense subset. Let Ci(q) := φ(m(q)) k(q)Si(q) for q ∈ Z∗
r and 0 elsewhere.

It is clear that Ci is a smooth section of the trivial bundle so(H)×Z∗ → Z∗ whose

image lies in C and C1(q), . . . , Cs(q) is a basis of C(q) for an open, dense subset of

q ∈ Z∗. 2

Lemma 2.4. There exist smooth sections Z∗ → so(H), q → Di(q), i = 1, . . . , s

such that D1(q), . . . , Ds(q) is a basis of C(q) for an open, dense set of q ∈ Z∗
r and

D1(q), . . . , Dn(q) span an abelian subalgebra for all q ∈ Z∗ where n = [h
2 ] = rank

so(H).

Proof: For any q0 ∈ Z∗
r , the centralizer C(q0) of B(q0) contains an elementX that is

in general position. Let q0 ∈ Z∗
r be such that the real-analytic sections S1, . . . , Ss :

Z∗
r → C evaluated at q0 forms a basis of C(q0). Then X =

∑s
i=1 xiSi(q0) for some

x1, . . . , xs ∈ R. Let X(q) :=
∑s

i=1 xiSi(q); by real-analyticity, X(q) is in general

position for an open, dense set of q ∈ Z∗
r . Let Y (q) :=

∑s
i=1 xiCi(q), so that

Y (q) = φ(m(q)) k(q)X(q), is a smooth section of C. Y (q) is in general position

for an open dense set of q ∈ Z∗
r . The sections Y (q), Y (q)3, . . . , Y (q)2n−1 ∈ C(q)

are therefore linearly independent for an open dense set of q and span an abelian

subalgebra. Let q1 ∈ Z∗ be some such generic element; then by adding in s − n

additional elements from {C1(q1), . . . , Cs(q1)} – say the final s − n elements – the

set {Y (q1), Y (q1)
3, . . . , Y (q1)

2n−1} can be completed to a basis of C(q1). It is clear

that letting Di = Y 2i−1 for i = 1, . . . , n and Di = Ci for i = n+ 1, . . . , s gives the
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desired sections. 2

Lemma 2.5. The functions

hi(p, q) := 〈v,Di(q)
2v〉 = 〈p,R 1

2Di(q)
2R

1

2 p〉

for i = 1, . . . , s where s = 1
2h(h− 1)− r ≥ n, are smooth, functionally independent

first integrals of XHg
. For all i = 1, . . . , s, j = 1, . . . , z and l = 1, . . . , n: {hi, qj} =

{hi, fl} = 0. For i, j = 1, . . . , n: {hi, hj} = 0.

Proof: Xhi
on G∗ is given by v̇ = −B(q)Di(q)

2v, q̇ = 0 so that {hi, hj} =

−〈B(q)Di(q)
2v,Dj(q)

2v〉 − 〈v,Dj(q)
2B(q)Di(q)

2v〉 = 0, because Di, Dj are com-

muting sections of the centralizer bundle for B. Because hi is left-invariant, it

Poisson commutes with the right-invariant hamiltonians qj and fl. 2

Let now H∗ = K(q) ⊕ F (q) where K(q) = kerB(q) and F (q) is the B(q)-

invariant, 〈, 〉-orthogonal complement of K(q). Let K → Z∗ be the sub-bundle of

H∗ ×Z∗ → Z∗ whose fibre at q is K(q). The previous arguments may be repeated

almost verbatim to prove that:

Lemma 2.6. Let k = inf dimK(q), and suppose k > 0. Then, there exists smooth

sections K1, . . . ,Kk : Z∗ → K such that K1(q), . . . ,Kk(q) forms a basis of K(q)

for an open dense set of q ∈ Z∗.

Lemma 2.7. The smooth functions

ki := 〈Ki(q), v〉 = 〈R 1

2Ki(q), p〉

are independent, Poisson commuting first integrals of XHg
for i = 1, . . . , k.

Proof: The functions ki(p, q) are Casimirs of the Poisson tensor on G∗. To see

this, it will be shown that for each µ = p + q ∈ G∗ the hamiltonian vector field

Xki
(µ) = ad∗

dki(µ)µ vanishes. Recall that there is a canonical identification of G
with G∗∗ so that dki(p+ q) = R

1

2Ki(q) +
∑z

j=1〈R
1

2
∂Ki

∂qj
, p〉Zj . Because p|[G,G] = 0:

(4) ad∗
dki(p+q)µ = ad∗

R
1

2 Ki(q)
q.

Therefore, for all x ∈ G: (ad∗
dki(p+q)q)(x) = −q ◦ [R

1

2Ki(q), x] = 〈x,A(q)R
1

2Ki(q)〉,
which is identically zero by hypothesis. Therefore ki Poisson commutes with all

left-invariant hamiltonians. 2
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2.3. First integrals on Almost Non-Singular 2-Step Nilpotent Lie Groups.

Definition 2.8 (Almost Non-Singular Lie Algebras). Let A : Z∗ → so(H) be the

linear map defined by 〈x,A(q)x′〉 = q ◦ [x, x′] for all x, x′ ∈ H and q ∈ Z∗. The

2-step nilpotent Lie algebra G is almost non-singular if there exists q ∈ Z∗ such

that detA(q) 6= 0.

Remark 2.9. (i) Because the map A is linear, detA(q) is an algebraic function so

that if it is non-zero at some point q, it is non-zero on an open dense subset of Z∗.

(ii) An equivalent definition of an almost non-singular 2-step nilpotent Lie algebra

G is one for which dµ has a nullity equal to dimZ for some µ ∈ G∗. The exterior

derivative of µ ∈ G∗ is defined by dµ(x, y) := −µ([x, y]) for all x, y ∈ G. (iii) A

third, equivalent definition of an almost non-singular 2-step nilpotent Lie algebra

is that for some µ ∈ G∗, the isotropy algebra Gµ = {x ∈ G : ad∗
xµ = 0} is equal

to Z(G). (iv) A fourth way to characterize an almost non-singular Lie algebra is

that there exists a µ ∈ G∗ such that dµ induces a symplectic form on G/Z(G). (v)

In [47] there is a consideration of the representation theory of nilpotent Lie groups

with property (iv).

Remark 2.10. In the sequel, G = H ⊕ Z will be an almost non-singular 2-step

nilpotent Lie algebra, dimH = 2n and dimZ = m for some integers n,m ≥ 1.

Lemma 2.11. Let φ(u) = exp(−1/u2) for all u ∈ R, and ψ : R/Z → R be a

smooth, 1-periodic function. Suppose that G is almost non-singular, and that D is

a discrete, cocompact subgroup of G. Then for each i = 1, . . . , 2n = dimH,

fi(x, p, q) := φ(detA(q))ψ(〈A(q)−1p+ x,Xi〉)

is a smooth function on T ∗G that is invariant under the action of D and so descends

to a smooth function on T ∗(D\G).

Proof: Left-trivialization gives T ∗G = G × G∗ and the left action of G on T ∗G

becomes simply left translation by G on the first factor. The action of the gen-

erators of D on G, lemma (2.2), means that 〈A(q)−1p + x,Xi〉 mod 1 is invari-

ant. A(q) adjA(q) = detA(q)I , so since A(q) is a linear function of q, A(q)−1

is a rational function of q. The singularities of A(q)−1 are the zeros of detA(q).

Because ψ is smooth and 1-periodic all of its derivatives are bounded, so the prod-

uct φ(detA(q))ψ(〈A(q)−1p + x,Xi〉) vanishes to all orders along the singular set
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detA(q) = 0. Therefore, fi is a C∞ function. 2

Remark 2.12. The functions f1, . . . , f2n are first integrals of all left-invariant

vector fields on T ∗G, in particular of XHg
, because they are functions of the hamil-

tonians of cotangent lifts of right-invariant vector fields on G.

In the almost non-singular case, lemmas (2.4,2.5) can be strenghtened for generic

left-invariant geodesic flows. By hypothesis, B(q) is 〈, 〉-skew symmetric and non-

degenerate for almost all q ∈ Z∗. The skew-symmetric matrix B(q) is in general

position if it possesses 2n distinct eigenvalues. If B(q) is in general position for

some q ∈ Z∗, then it is in general position for an open dense subset of q; it is clear

that for an open, dense subset of quadratic forms R, B(q) is in general position.

Definition 2.13. The linear map B : Z∗ → so(H) is in general position if for

some q ∈ Z∗, B(q) has 2n = dimH distinct eigenvalues.

Lemma 2.14. Let B : Z∗ → so(H) be in general position. The functions

hi(p, q) := 〈v,B(q)2i−2v〉 = 〈p,R 1

2B(q)2i−2R
1

2 p〉

are first integrals of XHg
for all i ≥ 1; moreover h1, . . . , hn are functionally inde-

pendent on an open, dense subset of T ∗G.

Remark 2.15. The functions hi : G∗ → R constructed in lemmas (2.5,2.14) clearly

descend to any quotient T ∗(D\G) = (D\G) × G∗ as first integrals of XHg
. They

also Poisson commute with fj and ql (lemma 2.11, equation 3) for all j and l.

Proof of Theorem (1.1, i): The vector field XHg
has n+m Poisson commuting

first integrals from lemmas (2.14,2.5) and equation (3). From lemmas (2.11,2.5),

XHg
has an additional 2n first integrals that are first integrals of the n+m first in-

tegrals hi and ql. Functional independence is obvious. Therefore, XHg
has 3n+m

independent first integrals, and n + m of these first integrals commute with all

3n+m. Since dimT ∗(D\G) = 4n+ 2m, this proves the non-commutative integra-

bility of XHg
. 2



14 LEO BUTLER

2.4. Liouville Integrability of Left-Invariant Geodesic Flows on HR man-

ifolds.

Definition 2.16. Let W ,V ,Z be non-trivial finite-dimensional vector spaces over

R and let λ be a bilinear mapping W × V → Z . Define the Lie algebra Gλ = G :=

W ⊕ V ⊕ Z with Lie bracket: [w + v + z, w′ + v′ + z′] := λ(w, v′) − λ(w′, v). Such

a Lie algebra will be call an HR-λ Lie algebra [40].

Lemma 2.17. An HR-λ Lie algebra is an almost non-singular 2-step nilpotent Lie

algebra iff ∃c ∈ Z∗ such that c ◦ λ induces an isomorphism V ' W∗.

Proof: Let µ = a+b+c ∈ W∗⊕V∗⊕Z∗ and observe that dµ(w+v+z, w′+v′+z′) =

−c ◦ λ(w, v′) + c ◦ λ(w′, v). Let 〈, 〉 be some fixed inner product on Gλ relative to

which W ⊕V ⊕Z is an orthogonal direct sum and define α : Z∗ → Hom(V ,W) by:

(5) 〈α(c)v, w〉 := c ◦ λ(w, v)

for all c ∈ Z∗, w ∈ W and v ∈ V . With this convention the linear map A : Z∗ →
so(W ⊕V) is given by:

(6) A(c) =





0 α(c)

−α(c)′ 0



 ,

where α(c)′ is the transposed map. Therefore detA(c)2 = detα(c)′α(c) detα(c)α(c)′ .

This is non-zero for some c iff α(c) is a bijection iff v → α(c)v is an isomorphism

of V with W∗. 2

Remark 2.18. The map α is linear in c, and injectiveness of α(c) is characterized

by the non-vanishing of the sum of squared l× l minors of α(c) so if α(c) is injective

for some c, then α(c) is injective for all c in the complement of an algebraic set.

Remark 2.19. An alternative proof of the previous lemma is this: by the charac-

terization of remark 2.9.iv, a 2-step nilpotent Lie algebra is almost non-singular iff

there exists µ ∈ G∗ such that dµ is a symplectic form on G/Z(G) ' V ⊕W . Since

V (resp. W) is clearly a dµ-isotropic subspace, its dµ-symplectic dual is contained

in W (resp. V). By symmetry, V ' W∗.

Remark 2.20. The HR Lie algebra Gλ is obviously independent of its presentation.

A canonical way to fix this presentation is to take the presentation of Gλ given by
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shrinking W (resp. V) by the left (resp. right) kernel of λ: Gλ '
(

W/ kerL λ
)

⊕
(

V/ kerR λ
)

⊕Z ′ where Z ′ = Z ⊕ kerL λ⊕ kerR λ.

Definition 2.21. Let Gλ be an HR Lie algebra with dimW ≥ dimV. If the bilinear

map c ◦ λ ' α(c) : V → W induces an injection of V → W∗ for some c ∈ Z∗ then

the presentation Gλ = V ⊕W ⊕Z will be said to be an injective presentation.

From the previous remark, it is clear that any HR Lie algebra admits an injective

presentation.

Theorem 2.22 (Theorem (1.1, ii)). Let Gλ be a rational, HR-λ Lie algebra and

G = Gλ its associated Lie group. Then for all left-invariant metrics g on G, the

geodesic flow of g is Liouville integrable on T ∗(D\G) for all cocompact, discrete

subgroups D.

Proof: Let G = V⊕W⊕Z be an injective presentation of G. From lemma (2.1) and

the subsequent discussion, a generating set of D, denoted by w1, . . . , wk, v1, . . . , vl

and z1, . . . , zm exists where wi (resp. vi, zi) lie in (commutative!) subalgebras of G
isomorphic to W (resp. V , Z). Define 〈, 〉 so that this basis of G is 〈, 〉-orthonormal

and let µ = a+ b+ c ∈ W∗⊕V∗⊕Z∗ = G∗ be the coordinates of a covector relative

to the induced splitting of G∗. The left-invariant metric hamiltonian associated

with the left-invariant metric g can be written as

(7) 2Hg = 〈a,Aa〉 + 2〈a,Bb〉 + 〈b,Cb〉 + 〈c,Dc〉,

where notation is abused and 〈, 〉 denotes both the inner product on G and its

various restrictions. The transformations A,B,C and D are defined as previously.

The vector field XHg
on T ∗G = G× G∗ is then

(8)

XHg
=















ȧ = −α(c)[B′a+ Cb], ẇ = Aa+ Bb,

ḃ = α(c)′[Aa+ Bb], v̇ = B′a+ Cb,

ċ = 0, ż = Dc+ 1
2 [v + w,Aa+ Bb+ B′a+ Cb],

where ′ indicates the transpose. Clearly a+α(c)v (resp. b−α(c)′w) is a W∗ (resp.

V∗) -valued first integral of XHg
.

Let m(c) = detα(c)′α(c). Then {m(c) = 0} is precisely the set of c ∈ Z∗ for

which α(c) is not an injective map. By hypothesis, α(c) is injective for some c ∈ Z∗,

so m(c) 6≡ 0. There exists a unique left inverse L(c) of α(c) that is defined on the

open, dense set {m(c) 6= 0} as follows: the symmetric operator s(c) = α(c)′α(c)
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is positive definite on the set {m(c) 6= 0} so there exists the inverse s(c)−1 =

(α(c)′α(c))−1 on this set; then L(c) := (α(c)′α(c))−1α(c)′. It is clear that on the

set {m(c) 6= 0}, L(c) is a real-analytic function (rational, even) in c. Extend L to

a function L : Z∗ → Hom(W ,V) by setting L(c) = 0 on the set {m(c) = 0}. With

φ(.) = exp(−1/(.)2) the functions fi := φ(m(c)) sin 2π〈L(c)a + v, vi〉, i = 1, . . . , l,

are seen to be smooth functions on T ∗(D\G).

From lemma (2.5) and equation (8), the functions c1, . . . , cm, h1, . . . , hl and the

functions f1, . . . , fl, form a commutative Poisson algebra of independent first in-

tegrals of XHg
. From lemma (2.6) there exist k − l smooth sections from Z∗ to

the kernel of A(c) but since α(c) is injective almost everywhere, these sections are

into the kernel of α(c)′. These sections provide an additional k − l first integrals

that are Casimirs of the Poisson bracket on G∗, and so they are in involution with

all other first integrals (see lemma (2.7)). This gives m + k + l = 1
2 dimT ∗(D\G)

independent, involutive first integrals of XHg
. 2

Remark 2.23. The simplest case of theorem (2.22) occurs when V ,W ,Z = R and

λ = 1, which gives the classical 3-d Heisenberg group. The 2n + 1-dimensional

Heisenberg group appears when V ,W = Rn, Z = R and λ is the standard inner

product on Rn. The case where V = R, W ,Z = Rn and λ is scalar multiplication of

V on W is studied in [12, 14] where it is shown that for n ≥ 2 the geodesic flows are

Liouville integrable and generically quasiperiodic and non-degenerate in the sense

of KAM theory.

3. Wild First Integrals

In this section we will prove theorem 1.2.ii: that if H ∈ C2(T ∗M) is C2 close to

an integrable geodesic flow constructed in the previous sections, andH is integrable,

then the first-integral map for H must be wild.

The proof relies on an important fact from convex geometry: if K is a compact

strictly convex subset of finite-dimensional vector space V , and 0 ∈ K, then there

is a compact strictly convex set K∗ ⊂ V ∗ containing 0 that is naturally “dual” to

K — and K∗ is as smooth as K. The duality of K and K∗ is, in fact, simply a

reflection of the Legendre transformation and it is involutive: K∗∗ = K (see [28],

section 3.2).

On the other hand, if a function f : V → R is C2, then f is a strictly convex

function iff for all x ∈ V , d2fx is a positive definite quadratic form. Clearly, if
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g ∈ C2(V ) is C2-sufficiently close to f on a compact, convex set K, then g|K is

also a strictly convex function.

The idea of our proof is: if F is C2 close to a metric (or a mechanical) hamil-

tonian, then the sublevel sets of F are also fibre-wise compact strictly convex sets.

That is, the sets {F ≤ c} intersect each fibre T ∗
mM in a compact strictly convex set.

Thus, the convex duals of F ’s sublevels (which lie in TM) are also compact and

strictly convex, so this allows us to define a C2 lagrangian on TM which is proper

and strictly convex. Compactness implies the Euler-Lagrange flow is complete,

and strict convexity implies that the Euler-Lagrange flow satisfies the Hopf-Rinow

property. A theorem due to Tăımanov is adapted here to deduce that if F is tamely

integrable, then π1(M) must have an abelian subgroup of finite index. This will

prove that M cannot be a compact 2-step nilmanifold.

All objects (maps, flows, manifolds, etc.) in this section will be C2 unless stated

otherwise.

3.1. Geometric Simplicity and Hopf-Rinow. Let π : E →M be a fibre bundle

and φt : E → E a complete flow.

Definition 3.1. If, for each m ∈ M and each non-trivial [c] ∈ π1(M ;m) there

exists p ∈ π−1(m) and a T > 0 such that γ(t) := πφtT (p), 0 ≤ t ≤ 1, is a closed

curve homotopic to c, then we say φt is a Hopf-Rinow flow.

We will say that a vector field is Hopf-Rinow if its flow is. Observe that if two

flows are orbitally equivalent and one is Hopf-Rinow, then so is the other.

Let us now state a result which we will use below. We have adapted the definition

of geometric simplicity that Tăımanov uses in [52, 53]:

Definition 3.2 (c.f. [52, 53]). Let M be a C1 manifold, E a compact fibre bundle

over M , φt : E → E a complete flow, and suppose that E = Γ q L such that:

(GS1) Γ is closed, φt invariant and nowhere dense;

(GS2) for each p ∈ E and open neighbourhood U 3 p, there is an open neighbourhood

W of p, W ⊆ U , such that L ∩W has finitely many path-connected components;

(GS3) L = qk
i=1 Li and each Li is an open path-connected component of L and is

homeomorphic to Tl × Dm (l +m = dimE).

Then we will say that φt is geometrically simple.
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Theorem 3.3 (c.f. Tăımanov [52, 53]). Let E be a compact fibre bundle over M . If

φt : E → E is Hopf-Rinow and geometrically simple, then π1(M) has a finite-index

abelian subgroup.

In [52, 53], Tăımanov assumes that φt is a geodesic flow on the unit tangent

bundle, but only the Hopf-Rinow property and geometric simplicity are used to

prove the theorem; the theorem stated here is an immediate consequence of his

proof. Note also that the fibre bundle E may have a boundary; the example we

have in mind is the unit disk bundle in TM .

3.2. Tame Integrability. Let’s recall the notion of tameness that was mentioned

in the introduction. We will say that a topological space is a polyhedron if it is

homeomorphic to a locally compact simplicial complex; in this case we will also say

that the space is triangulable. If K ⊂ L and L admits a triangulation that extends

a triangulation of K, then we will say that the pair (K,L) is triangulable. A subset

K ⊂M is said to be a tamely embedded polyhedron if there is a neighbourhood L ⊂
M of K, such that (K,L) is triangulable. In other words, there is a triangulation

of K that is extendable to a neighbourhood of K in M .

Definition 3.4. Let F : M → N be a C1 map, S ⊂ N the critical-value set of F

and C = F−1(S). F is tame if (T1) C is a tamely embedded polyhedron in M ; and

(T2) (S, F (M)) is triangulable. If F is not tame, we say F is wild.

We will say a hamiltonian flow is tamely integrable if it has a proper first-integral

map which is a tame map; otherwise, we say it is wildly integrable.

If M is compact, M and N are real-analytic manifolds (possibly with boundary)

and F is a real-analytic map, then C (resp. S) is a compact subanalytic subset of

M (resp. S). A theorem of [33, 34] asserts that both (C,M) and (S, F (M)) are

triangulable (see [50, 51] for further references).

Lemma 3.5. If φt : T ∗M → T ∗M is tamely integrable, ξ ⊂ T ∗M is a compact,

φt-invariant disk sub-bundle and φt|ξ is Hopf-Rinow, then there is a compact disk

sub-bundle E containing ξ such that φt|E is Hopf-Rinow and geometrically simple.

The following is inspired by a similar proof in [52].

Proof: Clearly, if ξ ⊂ E, E is invariant and φt|ξ is Hopf-Rinow, then φt|E is

Hopf-Rinow.
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Let J : T ∗M → Rm be a tame first-integral map for φt. Let C be the critical-

point set for J , S = J(C). Thus, C is a tamely embedded polyhedron in T ∗M and

(S, im J) is triangulable.

Let N be a compact polyhedral neighbourhood in im J that contains J(ξ). Since

ξ is compact, the neighbourhood N exists. Let E = J−1(N). Since J is proper, E

is compact.

Let S(N) be the m − 1 skeleton of N and let Γ = J−1(S(N)), and L = E − Γ.

The invariance of Γ is obvious. Because J is tame and has at least one regular

value, the set S(N) contains all critical values of J |E and Γ contains all critical

points of J |E. Since J is continuous, Γ is closed. If int Γ 6= ∅ then Γ would contain

an open set of regular points for J so J(Γ) would contain an open set, contradicting

the fact that S(N) = J(Γ) is nowhere dense. Hence Γ satisfies (GS1).

Since C has a polyhedral neighbourhood in T ∗M , by taking barycentric subdi-

visions, (GS2) is easily seen to be satisfied for any point p ∈ C ∩ Γ. If p ∈ Γ − C,

then p is a regular point for J , and J is a submersion on any sufficiently small

neighbourhood of p. Thus, any neighbourhood V of p contains a neighbourhood W

homeomorphic to A×B where B ⊂ Rm is a small open disk about J(p), and A is a

small open disk about p in the fibre J−1(J(p)). By taking barycentric subdivisions

of N , we may assume that B is the interior of a small complex containing p. Then

B − S(N) ∩ B contains finitely many path-connected components and so L ∩W
has finitely many path-connected components, which proves (GS2).

Let D ⊂ N be the interior of a simplex in N . Since D contains only regular

values of J , J |J−1(D) → D is a proper submersion with a contractible image.

Hence, it is a trivial fibration. Compactness of E implies the number of connected

components in J−1(D) is finite so J−1(D) is homeomorphic to a finite union of

Tl × Dm. Since N is a compact polyhderon, this proves that L is a finite, disjoint

union of path-connected sets Li such that Li ' Tl × Dm. Thus (GS3) is true. 2

3.3. Proof of theorem (1.2, ii). Let us make the following observation:

Lemma 3.6. If D < G is a discrete, cocompact subgroup of a connected, simply-

connected 2-step nilpotent Lie group G, then D does not contain an abelian subgroup

of finite index.

Proof: [Thanks to Satya Mohit] From the remarks at the beginning of section 2,

there exists x1, x2 ∈ D such that [x1, x2] 6= 1. Let z = [x1, x2]. Because G is
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2-step nilpotent, [xk
1 , x

k
2 ] = zk2

for all k ∈ Z; because G is connected and simply

connected, D is torsion free so zk 6= 1 for all k 6= 0. Assume now that A < D is

a finite-index abelian subgroup. Then there exists a k 6= 0 such that xk
1 , x

k
2 ∈ A.

Then 1 = [xk
1 , x

k
2 ] = zk2 6= 1. Absurd. 2

Let’s now turn to the main result of this section.

Remark 3.7. Ck(T ∗M ; R) is equipped with the topology of uniform convergence

of all derivatives up to order k on compact sets. A C2 open neighbourhood of

H ∈ C2(T ∗M ; R) can be described as follows: let g be a complete metric on M

with Levi-Civita connection ∇ and let |.| denote the extension of the norm induced

by g to all tensors on M ; let ∇̄ denote the Levi-Civita connection of the Sasaki

metric induced by g on T ∗M . Let hessH(X,Y ) := ∇̄X∇̄Y H − dH(∇̄XY ) for

H ∈ C2 and smooth vector fields X,Y on T ∗M . Given a compact set K ⊂ T ∗M

and ε > 0 a C2 open neighbourhood of H then consists of all C2 functions h such

that supp∈K {|H(p) − h(p)|, |dH − dh|p, |hessH − hessh|p} < ε.

Proof of theorem (1.2, ii): Let Q be the set of compact 2-step nilmanifolds

from section 2 and let M ∈ Q. Suppose that H = T + V is a C2 mechanical

hamiltonian on T ∗M , with T (p) = 1
2g

−1(p, p) the kinetic term and V = V (m) the

potential energy. Let h > h0 = supm∈M V (m). For each h > h0 the sublevel

set H−1((−∞, h]) is a compact, C2, fibre-wise strictly convex submanifold-with-

boundary of T ∗M that contains the zero section. The boundaryH−1(h) is a regular

level set for H .

Fix some h > h0, let K = H−1((−∞, 2h]) and let 0 < ε < 1
2 (h−h0). Let UH be

the C2 open neighbourhood of H determined by K and ε.

For each l ∈ R let Kl := F−1((−∞, l]) ∩K. If ε is sufficiently small, then for all

F ∈ UH , ∂Kh is a regular level for F |K, and Kh is a C2 submanifold-with-boundary

of T ∗M that is C2 close to H−1((−∞, h]). In particular, the zero section of T ∗M

lies in Kh and Kh is a compact, fibre-wise strictly convex set. Since strict convexity

is a C2-open property, it follows that for all l sufficiently close to h Kl is a compact

fibre-wise strictly convex set that contains the zero section. By compactness, the

fibre-wise strict convexity of Kl and the fact that it contains the zero section, for

each p ∈ T ∗
mM , p 6= 0, there is a unique λ > 0 such that λp ∈ ∂Kl. Define:

(9) Fl(m, p) := λ−1
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for all m ∈ M and non-zero p ∈ T ∗
mM . Because Kl is a compact fibre-wise strictly

convex C2 submanifold of T ∗M , Fl is C2 off the zero section and extends as a

C0 function to all of T ∗M . In addition, Fl is positively homogeneous of degree 1.

[See [28], section 3.2; Fl is analogous to the gauge function defined there.]

Because F−1
l (1) = ∂Kl = F−1(l) ∩K, and ∂Kl is a regular level for both hamil-

tonians, the flow of XFl
|∂Kl is a time change of XF |∂Kl.

Let Ql = 1
2F

2
l , which is C2 off the zero-section and C1 everywhere. The function

Ql is fibre-wise strictly convex, so we perform a Legendre transform with respect

to Ql. Let Gl : TM → R be the Legendre transform of Ql; it is non-negative,

C2 off the zero-section, C1 everywhere, fibre-wise strictly convex and positively

homogeneous of degree 2. The function Ll :=
√

2Gl therefore determines a Finsler

metric on M . [See [28], section 3.2; Ll is analogous to the support function defined

there.]

By the Hopf-Rinow theorem for Finsler metrics (see [28], theorem 2, section 4.2),

the Finsler metric induced by Ll is complete. Hence, the Euler-Lagrange flow of Gl

is Hopf-Rinow. Since the Euler-Lagrange flow of Gl is conjugate to the hamiltonian

flow of Ql, the latter is also Hopf-Rinow. Therefore, the flow of XQl
and hence

XFl
is Hopf-Rinow. Since the flow of XFl

|Fl
−1(c) is orbitally equivalent to that of

XFl
|∂Kl for any c > 0, it follows that XFl

|∂Kl is Hopf-Rinow. Hence, XF |∂Kl is

Hopf-Rinow.

Since the above arguments hold for l < h, l sufficiently close to h, it follows that

XF |Kh is Hopf-Rinow. Recall that Kh is a compact disk bundle over M .

If XF is tamely integrable on T ∗M , then lemma 3.5 implies thatXF |E is geomet-

rically simple for some compact, invariant disk bundle E containing Kh. Theorem

3.3 implies that π1(M) is almost abelian. By hypothesis, the manifold M has a

2-step nilpotent fundamental group. Absurd. 2

Remark 3.8. (i) The first integral map constructed in section 2 are wild; theorem

1.2.ii shows that this wildness is rooted in the topological complexity of the 2-step

nilmanifold M . (ii) This proof also demonstrates that the integrable geodesic flows

exhibited on the 2-step solvmanifolds in [9] and the n-step nilmanifolds in [13] also

possess a C2 open neighbourhood which is devoid of tamely integrable hamiltonian

systems.
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4. Monodromy of the Liouville Foliation

This section studies the bifurcations of the Liouville tori and the monodromy

of the Liouville foliaton induced by the Liouville-integrable vector field XHg
on

T ∗(D\G) where G is the 2n+ 1-dimensional Heisenberg group. In [29] it is proven

that if D is a discrete cocompact subgroup of the 2n + 1-dimensional Heisenberg

group, then there exists positive integers 1 ≤ k1| · · · |kn and generators w1, . . . , wn,

v1, . . . , vn, z1 such that D = 〈w1, . . . , vn, z1 : [wi, vi] = zki

1 for all i = 1, . . . , n and

all other commutators are trivial 〉. We identify W (resp. V ,Z) with the span of

the wi (resp. vi,z1). In the notation of the previous section:

(10)

XHg
=















ȧ = −c[B′a+ Cb], ẇ = Aa+ Bb,

ḃ = c[Aa+ Bb], v̇ = B′a+ Cb,

ċ = 0, ż = Dc+ 1
2 [w + v,Aa+ Bb+ B′a+ Cb].

Some obvious first integrals of XHg
are given by: c, fi = φ(c) sin 2π( bi

c
− wi).

There is a unique symplectic linear transformation (a, b) → (r, s) that block di-

agonalizes 2Hg = 〈a,Aa〉 + 2〈a,Bb〉 + 〈b,Cb〉 + Dc2 =
∑n

i=1 µi(r
2
i + s2i ) + Dc2.

This transformation preserves the Poisson bracket on G∗. Then hi = 1
2r

2
i + 1

2s
2
i

for i = 1, . . . , n are first integrals for XHg
. The family c, f1, . . . , hn is a complete,

involutive, independent family of first integrals for XHg
.

Remark 4.1. (i) The functions gi = φ(c) sin 2π(ai

c
+ vi) are additional, indepen-

dent first integrals that are not in involution with the family fi. (ii) The constants

µi may be made periodic functions of vi, an operation that preserves the Liouville

integrability of XHg
. There is therefore an explicit, infinite-dimensional parame-

terized family of Liouville integrable geodesic flows on T ∗(D\G).

The following lemmas are clear. The singular fibres of type I, II, and III (see

introduction) are the singular sets ∪n
i=1 Hi, ∪n

i=1 Fi and O respectively:

Lemma 4.2. Let J := (c, h1, . . . , hn, f1, . . . , fn) : T ∗(D\G) → R×Rn
≥0×Rn be the

first integral mapping. Let Hi := {hi = 0}, Fi := {fi = ±φ(c)} and O := {c = 0}.
Then

(11) crit(J) = O ∪ (∪n
i=1 Hi) ∪ (∪n

i=1 Fi) .
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Lemma 4.3. Let Σ denote the critical-value set of J , R denote the regular-value

set and let im J = Σ ∪ R. Then:

(12) im J = {(α, β, γ) ∈ R × Rn
≥0 × Rn| − φ(α) ≤ γi ≤ φ(α), i = 1, . . . , n},

(13) Σ = (O ∩ im J) ∪ (∪n
i=1 Hi ∩ im J) ∪ (∪n

i=1 Fi ∩ im J)

where O is hyperplane defined by α = 0, Hi = {βi = 0} and Fi = {(α, β, γ)|γi =

±φ(α)}.

Let Σr := O ∪ (∪n
i=1 Hi), and define the map Ψ := (c, h1, . . . , hn, θ1, . . . , θn)

where θj :=
bj

c
−wj mod 1. Then Ψ : T ∗(D\G)−Σr → R ×Rn

>0 ×Tn is a proper,

real-analytic submersion with lagrangian tori as fibres, hence Ψ is a real-analytic

lagrangian fibration. The monodromy of the bundle is determined by the action

of the fundamental group of the base B = R × Rn
>0 × Tn on the fibres. The most

straightforward way to see this action is to lift the lagrangian fibration Ψ to a

lagrangian fibration Ψ̃ : S̃r → B̃ = R × Rn
>0 × Rn. The following diagram realizes

this lifting:

S̃r Π−→ Sr

Ψ̃ ↓ ↓ Ψ

B̃
π−→ B ,

where Sr = T ∗(D\G) − Σr. The covering Π : S̃r → Sr is obtained by tak-

ing the abelian subgroup F = 〈v1, . . . , vn, z〉 of D and forming the covering Π :

T ∗(F\G) → T ∗(D\G). Then one takes S̃r = Π−1(Sr) and observes that the

map Ψ̃ = (c, h1, . . . , hn,Θ1, . . . ,Θn) with Θi = bi

c
− wi is a proper, real-analytic

lagrangian fibration. Since the image of Ψ̃ is contractible, S̃r is a trivial T2n+1

bundle. The covering map π : B̃ → B is the map (α, β, γ) → (α, β, γ mod Zn).

The action of π1(B) on the bundle Ψ is obtained by identifying the fibres of Ψ̃

under the action of D on S̃r. Because F �D is normal in D, D acts on the left on

F\G by d ∗ Fg := Fdg for all d ∈ D and g ∈ G. The action of F is clearly trivial,

and so we need only consider the action of D/F ' 〈w1, . . . , wn〉 on T ∗(F\G). It is

clear that π1(B) is naturally identified with D/F .

Let us now fix a basis of 1-cycles for the fibres of the map Ψ̃ in S̃r as follows.

Let σ = (α, β1, . . . , βn, γ1, . . . , γn) be the coordinates on R × Rn
>0 × Rn and define
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the section of the bundle Ψ̃ by:

(14) ξ(σ) =















c = α, z = 0 + Z,

ri = 0, si =
√

2βi,

wi = bi(r,s)
c

− γi, vi = 0 + Z.

Let g = (w, v, z) and P = (r, s, c) and:

ci(t, F g, P ) := ((tvi) ∗ Fg, P ),(15)

cn+1(t, F g, P ) := ((tz1) ∗ Fg, P ),

cn+i+1(t, F g, P ) := (Fg, (r + ei(ri(cos 2πt− 1) + si sin 2πt),

s+ ei(ri sin 2πt+ si(cos 2π − 1)t), c)),

for i = 1, . . . , n; ei is the i-th standard basis vector of Rn. Note that 0, vi, z1 ∈ F

so the ci do define closed loops in T ∗(F\G).

Let Cj(t, σ) := cj(t, ξ(σ)), t ∈ R/Z, which define a basis of π1(Ψ̃
−1(σ); ξ(σ))

that smoothly varies with σ. We will let [Cj ](σ) denote the homotopy class in

π1(Ψ̃
−1(σ); ξ(σ)) of Cj(t, σ). The action of wiF on [Cj ](σ) is given by left transla-

tion. The only component of Ψ̃ altered by translation by wiF is Θi: it is decreased

by 1. Thus, the translated cycle lies in π1(Ψ̃
−1(α, β, γ − ei); ξ(α, β, γ − ei)). A

simple calculation using the multiplication structure on G shows that:

(16) wiF ∗ [Cj ](α, β, γ) = [Cj ](α, β, γ − ei) + δijki[Cn+1](α, β, γ − ei)

for i = 1, . . . , n and j = 1, . . . , 2n+ 1. This proves

Theorem 4.4 (Theorem 1.3). The bundle Ψ has the monodromy group isomorphic

to Zn ' D/F . In particular, there do not exist global action-angle coordinates of

Ψ : T ∗(D\G) − Σr → R × Rn
>0 × Tn [21].

Remark 4.5. Lemma 4.2 shows that the Liouville foliations of any two left-

invariant metric hamiltonians are isomorphic. That is, if H and H ′ are two left-

invariant metric hamiltonians and J (J ′) is the first-integral map for H (H ′), then

there exists a diffeomorphism φ : T ∗(D\G) → T ∗(D\G) such that J ′ = J ◦ φ. On

the other hand, a calculation shows that if D is normalized to 1 and the constants

µi of H (µ′
i of H ′) satisfy

∑n
i=1 µi 6=

∑n
i=1 µ

′
i, then there does not exist a homeo-

morphism ϕ : T ∗(D\G) → T ∗(D\G) such that ϕ maps the trajectories of XH onto

those of XH′ . That is, there is no orbital equivalence of these geodesic flows. This

compares with the situation observed by Bolsinov and Fomenko, who show that
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the geodesic flow on ellipsoids E, E ′ ⊂ R3 are orbitally equivalent iff the ellipsoids

are similar while the Liouville foliations of the geodesic flows on all ellipsoids are

isomorphic [8].

5. htop(Φ) = 0

In this section, theorem (1.4) is proven. The proof of this theorem follows the

idea in [12]. An incorrect proof of the vanishing of the topological entropy for a

left-invariant geodesic flow on a nilmanifold occurs in [43]. The author there makes

the assumption that the metric’s exponential map coincides with the group’s, which

is incorrect. In [17], the present author constructs examples of 3-step nilmanifolds

with positive entropy, left-invariant geodesic flows. To prove theorem (1.4), most

of the work is done by the following two theorems due to Bowen:

Theorem 5.1 ([10]). Let T : X → X be continuous endomorphism of the compact

metric space X and suppose that f : X → Y is a continuous endomorphism of

compact metric spaces that is T -invariant. Then:

htop(T ) = sup
y∈Y

htop(T |f−1(y)).

Theorem 5.2 ([10]). Let T : X → X be a continuous endomorphism of the compact

metric space X, and let G be a compact topological group that acts freely as a group

of automorophisms of X. Let π : X → Y be the orbit map. If T is G-invariant and

S : Y → Y is the endomorphism of Y induced by T , S ◦ π = π ◦ T , then

htop(T |X) = htop(S|Y ).

It is recalled that the topological entropy of a geodesic flow φt : T ∗M → T ∗M

is the topological entropy of the time-1 map of the geodesic flow restricted to the

unit cotangent bundle. In this section, notation will be abused and the topological

entropy of a (complete) vector field will be understood to mean the topological

entropy of the time-1 map of its flow.

The equations of motion for the left-invariant hamiltonian H : T ∗G → R are

given by (equation 3):

(17) XH(x, y, p, q) =







ẋ = R
1

2 v, v̇ = −B(q)v,

ẏ = Sq + 1
2 [x,R

1

2 v], q̇ = 0,

where v = R
1

2 p. The vector field XH on T ∗(D\G) restricts to the unit cotangent

bundle {H = 1
2}, which is compact. By theorem (5.1), it suffices to consider the
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restriction of XH to Eq := {H = 1
2 , q = cst.} to determine the topological entropy

of the geodesic flow. The vector field XH |Eq
is invariant under the action of the

compact symmetry group Z(D)\Z(G) ' Tz where z = dimZ(G). This symmetry

group acts freely on Eq – because it is the cotangent lift of the right action of Z(G)

on D\G –, so the space Mq := Eq/T
z is a manifold. Indeed, Mq = Th × Sz−1

r in

the case where r2 = 1− 〈q, Sq〉 > 0, Sk
r is the k-dimensional sphere of radius r > 0

and Mq = Th in the case r2 = 0. The induced vector field on Mq in the first case is

(18) YH,q(x, p) =
{

ẋ = R
1

2 v, v̇ = −B(q)v,

where notation is abused and the coordinates (x, v) are employed on this reduced

space; in the second case, the induced vector field YH,q ≡ 0. It is clear that only

the first case where r > 0 is relevant. In this case, the vector field YH,q is invariant

under the free action of the torus Th on Mq which acts by θ : (x, v) → (x + θ, v).

The manifold Mq can be reduced by this action to obtain Mq/T
h = Sz−1

r . The

vector field YH,q descends to

(19) ZH,q(p) =
{

v̇ = −B(q)v.

Applying Bowen’s theorem (5.2) twice yields that the topological entropy of the

time-1 map of XH |Eq
equals the topological entropy of the time-1 map of ZH,q.

Because B(q) is skew-symmetric, the time-1 map of ZH,q is an isometry, so its

topological entropy is zero.

That is:

htop(XH |S∗(D\G)) = sup htop(XH |Eq) = sup htop(YH,q) = sup htop(ZH,q) = 0.

2

6. Non-integrable geodesic flows on G3

6.1. A remark on non-integrability. This section offers a generalized definition

of integrability inspired by that of Bogoyavlenskij [6, 7]. A criterion is developed for

manifolds with a non-commutative fundamental group that allows one to demon-

strate the complete absence of flow-invariant toroidal neighbourhoods.

Definition 6.1. Let φt : M → M be a 1-parameter group of homeomorphisms of

M (a flow). Then φt is locally integrable at m ∈M if there exists a neighbourhood
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U of m and a homeomorphism h : U ↪→ Ds × Tr such that h ◦ φt ◦ h−1 = Tt where

Tt(x, θ) = (x, θ + tω(x)) and ω : Ds → Rr is a continuous map.

In the sequel [c] will denote the homotopy class of a curve; c̄ will denote its free

homotopy class.

Definition 6.2. Let F(M) denote the set of free homotopy classes of curves in M ,

M an arc-wise connected space. Then c̄, c̄′ ∈ F(M) commute if for some m ∈ M ,

there exists [c], [c′] ∈ π1(M ;m) such that [c] ∗ [c′] = [c′] ∗ [c] and [c] ∈ c̄, [c′] ∈ c̄′. Let

C(c̄;M) denote the set of free homotopy classes in M that commute with c̄.

One notes that the commutativity of free homotopy classes is well-defined: if n ∈
M is a second point then π1(M ;n) is isomorphic to π1(M ;m), and the isomorphism

preserves free homotopy classes.

Lemma 6.3. Let φt : M → M be a 1-parameter group of homeomorphisms of M

that is locally integrable at m ∈M . Then there is an open, φt-invariant neighbour-

hood U of m such that if n, n′ ∈ U are periodic points of φt then the free homotopy

classes of these orbits commute.

Proof: The neighbourhood U is homeomorphic to Ds × Tr, so π1(U ;m) ' Zr

and any closed curve c : T1 → U is freely homotopic to a closed curve based at

m. Hence, C(c̄;U) = F(U). Therefore, the free homotopy classes of φt’s periodic

orbits in U all commute. 2

Remark 6.4. The contrapositive of 6.3 says simply that if m ∈ M is a periodic

point of the flow φt and in any neighbourhood U of m, there exists a periodic point

m′ such that the free homotopy classes of the periodic orbits through m and m′ do

not commute, then φt is not locally integrable at m.

6.2. An example: non-integrable geodesic flows on 2-step nilmanifolds.

Let G = G3 = (R3 × Λ2(R3), ∗) with multiplication on G defined by

(x, y) ∗ (x′, y′) := (x+ x′, y + y′ +
1

2
x ∧ x′),

where ∧ is the exterior product in R3. By choosing the standard basis in R3, Λ2(R3)

may be identified with R3 and ∧ may be identified with the cross product. G may

be viewed also as the extension 0 → Λ2(R3) → G→ R3 → 0.
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6.2.1. discrete, cocompact subgroups of G.

Lemma 6.5. Let D be a cocompact, discrete subgroup of G. Then for some k ∈
Z3+, k1|k2|k3, there is an automorphism φ : G→ G such that φ(D) = D(k) where

D(k) := 〈a1, a2, a3, b1, b2, b3 : [a1, a2] = bk3

3 , [a2, a3] = bk1

1 , [a3, a1] = bk2

2 , [bi, .] = 1〉.

The generators of D(k) are ai := (ei, 0) and bi := (0, k−1
i ei), where ei are the

standard basis vectors of R3.

The proof of this lemma is straightforward. Most important for our purposes is

that it can be assumed that D = D(k) contains the subset Z3 × Z3.

6.2.2. A family of left-invariant geodesic flows. Left-trivialization of the cotangent

bundle T ∗G produces the identification T ∗G ' R3 ×R3×R3×R3 with coordinates

(x, y, p, q). A riemannian metric g on G naturally induces a hamiltonian on T ∗G

via the Legendre transform: F : V ∈ TxG → P = gx(V, ·) ∈ T ∗
xG. The solutions

of Hamilton’s equations on T ∗G for the hamiltonian 2H(x, P ) = gx(F−1P, F−1P )

project to g-geodesics on G. On T ∗G a left-invariant metric has the hamiltonian

2H = 〈p,Ap〉 + 2〈p,Bq〉 + 〈q,Cq〉 where 〈, 〉 is the euclidean inner product on R3

and A,B,C are symmetric 3 × 3 matrices. The left-invariant hamiltonian

(20) 2H := |p|2 +
1

2π
µ|q|2,

where µ ∈ Q and |.| is the euclidean norm on R3, yields the vector field:

(21) XH :=







ṗ = A(q)p, q̇ = 0,

ẋ = p, ẏ = 1
2π
µq + 1

2x ∧ p.

The matrix A(q) is defined by A(q)p = q∧p. Let φt denote the flow of XH on T ∗G

and let Φt denote the induced flow on T ∗(D(k)\G).

6.2.3. Proof of non-integrability of Φt.

Lemma 6.6. Let 0 6= l ∈ Z3, |l| ∈ Z. Let Ql be the set of (x, y, p, q) ∈ T ∗G for

which there exists t ∈ R and m ∈ Z3 such that φt(x, y, p, q) = (x + l, y +m+ 1
2 l ∧

x, p, q). Then Pl := ∪a∈Z Qal is dense in T ∗Gl := {(x, y, p, q) : q ∈ spanR{l}}.

Corollary 6.7. Let P := ∪l∈Z3, |l|∈Z Pl. Then P is a dense subset of T ∗G.

Proof of corollary 6.7: Assuming lemma (6.6), it is only necesary to show that

∪l∈Z3, |l|∈Z T ∗Gl is dense in T ∗G. This is equivalent to the density of rational
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points on the unit sphere in R3. By stereographic projection, this is clear. 2

We now prove the following theorem, which clearly implies theorem (1.5):

Theorem 6.8. The flow Φt is non-integrable in the sense of definition (6.1) on

any open subset U of T ∗(D(k)\G).

Proof: For a path-connected topological space X , the free homotopy classes of

maps C0(T1, X) are in one-to-one correspondence with the conjugacy classes of

the fundamental group π1(X ;x) for an arbitrary point x ∈ X . In the case of

T ∗(D(k)\G), its fundamental group π1(T
∗(D(k)\G); (D(k)e, P )) ' D(k) in the

natural way; it follows that the free homotopy classes of maps C0(T1;T ∗(D(k)\G))

can naturally be identified with the conjugacy classes of D(k). This identification

can be made explicit as follows: let c ∈ c̄ be a loop in the free homotopy class c̄

that is based at (D(k)e, 0); let c̃ : [0, 1] → T ∗G be the unique lift of c such that

c̃(0) = (e, 0) ∈ T ∗G; because c(1) = c(0), c̃(1) = d ∈ D(k). The free homotopy

class c̄ is then identified with the conjugacy class of d: c̄ ≡ {gdg−1 : g ∈ D(k)}.
This identification is used in the proof.

Assume lemma (6.6) and corollary (6.7). Then, if U is an open subset of

T ∗(D(k)\G), there exists n, n′ ∈ U such that the flow Φt is periodic through each

point and the free homotopy classes of these periodic orbits (call them c̄ and c̄′)

are c̄ = {(l,m + h) : (0, h) ∈ [D(k), D(k)]} and c̄′ = {(l′,m′ + h) : (0, h) ∈
[D(k), D(k)]} for some l, l′ ∈ Z3 such that l ∧ l′ 6= 0. Therefore, the free homotopy

classes c̄ and c̄′ do not commute; now apply theorem (6.3). 2

Remark 6.9. Because the geodesic flow on H−1(a) for a > 0 is a time reparam-

eterizations of the geodesic flow on H−1( 1
2 ), this proves the absence of any open

sets U ⊂ S∗(D(k)\G) that are fibred by invariant tori.

Proof of lemma (6.6): Fix 0 6= l ∈ Z3 such that |l| ∈ Z. It may be assumed

that the vertical momentum q 6= 0, since this is a dense subset of T ∗G. Let

p = u+ v be the orthogonal decomposition of p relative to q: u = u(p, q) = 〈p,q〉
〈q,q〉 q

and v = v(p, q) = p − u [Recall: we have identified R3 ≡ Λ2(R3) via the euclidean

inner product]. The set of p such that u, v 6= 0 is a dense subset of T ∗G, so it will

be assumed that u, v 6= 0. In order that φt(x, y, p, q) = (x + l, y +m+ 1
2 l ∧ x, p, q)
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it is necessary that there exist t, c ∈ R such that:

expA(q)t = 1,(22)

tu = l,(23)

q = cl.(24)

The skew-symmetric matrix A(q) is not invertible on R3; nonetheless, its restric-

tion to spanR{q}⊥, the orthogonal complement to the subspace spanned by q, is

invertible. In the sequel, A(q)−1 will denote the inverse on spanR{q}⊥. Then,

(25) m = x ∧ l + l ∧ A(q)−1v +
1

2
tA(q)−1v ∧ v + t

µ

2π
cl.

There is a redundancy in the parameters due to the fact that the flow φt on

different energy levels is simply a reparameterization of the flow on S∗G. For this

reason, it can be assumed that |q| = 1; then t = 2πn for some n ∈ Z, c = |l|−1 and

A(q)−1 = −A(q) = −|l|−1A(l). Therefore,

(26) m =
[

x+ |l|−1A(l)v
]

∧ l + πn|l|−1v ∧ A(l)v + nµ|l|−1l.

The former term lies in spanR{l}⊥ while the latter two terms lie in spanR{l}.
Let L :=spanQ{l} be the rational span of l, and L⊥ be the rational subspace that

is orthogonal to L. The set of p = u+ v such that u ∈ 1
π
L and v ∈ 1√

π
L⊥ is dense

in R3. Then πn|l|−1v ∧ A(l)v ∈ L for p in a dense set, and for v fixed, there is a

dense set of x such that
[

x+ |l|−1A(l)v
]

∧ l ∈ L⊥.

Therefore, in a neighbourhood of any point (x′, y′, p′, q = |l|−1l), there exists an

(x, y, p, q = |l|−1l) such that m ∈ L ⊕ L⊥ = Q3. By taking some multiple al of

l for a ∈ Z and taking n ∈ Z large enough (without altering the starting point

(x, y, p, q = |l|−1l)), the two components of m can therefore be made to lie in Z3

and so m ∈ Z3. 2

Remark 6.10. (i) This proof uses only two properties of G: (i) for µ, µ′ ∈ G∗ in

general position, the sum of the stabilizer subalgebras Gµ+Gµ′ is not a commutative

subalgebra; (ii) the periodic points of Φt are dense in T ∗(D(k)\G). Eberlein, Lee

and Park, and Mast [22, 39, 44] have studied a question connected with (ii): given

a left-invariant metric g on G, when are the periodic points of the quotient geodesic

flow on T ∗(Γ\G) dense for all discrete, cocompact subgroups Γ? Let us note that the

metric defined in equation 20 does not satisfy this property: Let α = diag(u1, u2, u3)

satisfy detα = 1; let Λ2α denote the linear map on Λ2(R3) induced by α; and let φ =
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diag(α,Λ2α). The linear map φ is an automorphism of G3 for all such α. Assume

that u1, u2 ∈ R are chosen so that Q < Q(u1) < Q(u1, u2) are transcendental

field extensions, and let Γ = φ(D(k)) for any k. Then the set of periodic points in

T ∗(Γ\G3) of the geodesic flow of equation 20 is nowhere dense. Note the contrast

with the almost non-singular nilpotent Lie groups: a left-invariant geodesic flow on

one of these Lie groups has a dense set of periodic points on one compact quotient

iff the periodic points are dense on all compact quotients [22, 39]. We believe that

this uniformity across compact quotients is equivalent to integrability in the 2-step

case.

7. Concluding Comments

In this paper, we have seen that two wide classes of two-step nilmanifolds admit

integrable geodesic flows. The integrability of these left-invariant geodesic flows has

been seen to depend crucially on the geometric properties of the coadjoint orbits

of the covering Lie groups, G. Specifically, both almost non-singular and HR Lie

groups have the property that if µ, µ′ ∈ G∗ are in generic position, then Gµ +Gµ′ is

a commutative subalgebra of G. That is, there is an abelian subgroup A such that

for µ ∈ G∗ in general position, Gµ ⊂ A. A is necessarily normal in G.

If H : T ∗G → R is a metric hamiltonian, then how many first integrals can be

found for H that push down to a quotient T ∗(D\G)? Clearly, if i is the index of

G, then the i = dimG − dimO(µ) Casimirs of {, } on G∗ push down. When H is

quadratic, an additional n − 1
2 i quadratic integrals push down where n = dimG.

If we take the momentum map ψ(g, µ) = Ad∗
gµ of the left action of G on T ∗G,

then ψ is a first integral of a left-invariant hamiltonian H . The question then

becomes: to what extent can ψ be “pushed down” to T ∗(D\G)? Let us note that

we want to find functions f : G∗ → R such that f ◦ ψ is D invariant. Because

ψ(Dg, µ) = {Ad∗
dgµ : d ∈ D} this is equivalent to studying the action of D on

G∗. Now, O(µ) ' G/Gµ ' H/Hµ where H = G/Z(G) and Hµ = Gµ/Z(G), so

D\O(µ) ' E\H/Hµ where E = D/Z(D). In our case, E\H ' Tp and Hµ acts on

this torus by translation, so we can form the projectionE\H/Hµ → E\H/Hµ ' Tlµ

where Hµ is the closure of E\Hµ in E\H and lµ = dimHµ.

In general, one expects that lµ will jump around as µ varies and the rationality

properties of Hµ relative to E change. There is an exceptional case, however: when

Gµ ≤ A for µ ∈ G∗ in general position and A is an abelian subgroup. Then Hµ ⊂ B

where B is the closure of E\B in the torus E\H and B = A/Z(G). One has the
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projection Tp ' E\H/Hµ → E\H/Hµ → E\H/B ' Tl. Observe that l is a

geometric-algebraic invariant of the pair (D,G) and that E\H/B ' Tl is a Poisson

manifold, the rank of which is constant for µ in general position.

In this special case, then, one can construct an algebra of integrals on T ∗(D\G)

whose dimension is 1
2 (n+ i) + p− l where p = dimH (section 2). The dimension of

the centre of this algebra is 1
2 (n+ i)+s where s is dominated by the dimension of a

maximal abelian subalgebra of C∞(E\H/B). Letting i = q+j where q = dimZ(G),

we get the condition that

(27) s = l − j

in order for H to be integrable in the non-commutative sense. In section 2 we

studied the special case where l = j = 0. In order for H to be Liouville integrable,

one has the condition that

(28) p+ j = 2l.

In section 2.4, we studied this case.

All of these considerations suggest that the study of integrable left-invariant

hamiltonians on T ∗(D\G) for G a simply connected Lie group and D a discrete

subgroup of G, reduces to a simulaneous investigation of the integrability of the

Euler equations on G∗ and the coadjoint action of D on G∗. With this idea we are

able to prove:

Theorem 7.1. Let C : T ∗SL(2; R) → R denote the Casimir, C(g, p) = trace p2,

D ≤ SL(2; R) be a discrete subgroup, and H : T ∗SL(2; R) → R be a smooth, left-

invariant function. Then H is both Liouville and non-commutatively integrable on

the open submanifold {C > 0} in T ∗(D\SL(2; R)).

In addition, if D is a lattice subgroup and µ is a left-invariant probability measure

on S∗(D\SL(2; R)), then for any ε > 0 there exists metric hamiltonians H± :

T ∗(D\SL(2; R)) → R such that the µ-measure of the set of XH±
-invariant Liouville

tori on S∗(D\SL(2; R)) is ≥ 1 − ε (resp. ≤ ε).

Details of this will appear elsewhere.
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[43] Anthony Manning. More topological entropy for geodesic flows. In Dynamical systems and

turbulence, Warwick 1980 (Coventry, 1979/1980), pages 243–249. Springer, Berlin, 1981.

[44] Maura B. Mast. Closed geodesics in 2-step nilmanifolds. Indiana Univ. Math. J., 43(3):885–

911, 1994.

[45] S. V. Matveev and A. T. Fomenko. A Morse-type theory for integrable Hamiltonian systems

with tame integrals. Mat. Zametki, 43(5):663–671, 703, 1988.
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