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Abstract. This paper studies completely integrable hamiltonian systems
on T ∗Σ where Σ is a Tn+1 bundle over Tn with an R-split, free abelian
monodromy group. For each periodic Toda lattice there is an integrable
hamiltonian system on T ∗Σ with positive topological entropy. Bolsinov and
Taı̆manov’s example of an integrable geodesic flow with positive topological
entropy fits into this general construction with the A(1)

1 Toda lattice. Topo-
logical entropy is used to show that the flows associated to non-dual Toda
lattices are typically topologically non-conjugate via an energy-preserving
homeomorphism. The remaining cases are approached via the homology
spectrum. An energy-preserving conjugacy implies the congruence of two
rational quadratic forms over the unit group of a number field F. When F/Q
is normal a classification of flows is obtained. In degree 3, this results from
a well-known result of Gelfond; in higher degrees, the result is conditional
on the conjecture that a rationally independent set of logarithms of algebraic
numbers is algebraically independent over Q.

1. Introduction

Say that a smooth flow ϕt : M → M is integrable if there is an open dense
subset L ⊂ M such that L is covered by smooth coordinate charts (I, φ) :
U → Da ×Tb and the coordinate maps conjugate ϕt to a smooth translation-
type flow Tt(I, φ) = (I, φ + tξ(I )). From this local form, it is tempting to
believe that integrable flows cannot be interesting from a dynamical point-
of-view. This paper constructs a family of integrable hamiltonian systems
with a rich phase portrait. The topological classification of these flows relates
to an outstanding conjecture in transcendental number theory. To explain:
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Let Γ < GL(n + 1;Z) be a rank n, torsion-free, abelian group that
splits over R and acts irreducibly on Zn+1. Γ acts uniformly discretely on
Σ̂2n+1 = Rn × Tn+1, so let Σ = Σ̂2n+1/Γ be the compact real-analytic
quotient. Let Ψ be the basis of a root system of a simple Kac-Moody Lie
algebra of rank n.

Theorem 1. For each manifold Σ and root basis Ψ there are (n + 1)! real
analytic, polynomial-in-momenta hamiltonians H : T ∗Σ → R such that:

i. the hamiltonian flow, ϕt , of H is integrable;
ii. for each A ∈ Γ , the automorphism of Tn+1 induced by A is a subsystem

of ϕ1;
iii. if Ψ = A(1)

n or D(2)
n+2, then H is induced by a real-analytic riemannian

metric on Σ.

For each root basis there is a mechanical system, called a Bogoyavenskij-
Toda lattice,1 that is completely integrable. The proof of Theorem 1 shows
that there is an open real-analytic set on which the lift of ϕt to T ∗Σ̂ is semi-
conjugate to the flow of the corresponding Bogoyavlenskij-Toda lattice.

Root bases arise in the classification of simple Kac-Moody Lie alge-
bras [21]. It will be convenient to say that a root basis of rank n is a span-
ning set Ψ of an n-dimensional real euclidean space (h∗, 〈〈, 〉〉) such that:
(R0) Ψ contains n+1 elements; (R1) for all distinct r, s ∈ Ψ , 2〈〈r, s〉〉/|r|2 ∈
Z≤0; and (R2) minr∈Ψ |r| = 1. For each root basis Ψ there are unique pos-
itive integers ωr such that gcd (ωr : r ∈ Ψ) = 1 and

∑
r∈Ψ ωrr = 0. Let

ω = lcm (ωr : r ∈ Ψ) and wr = ωr/ω. Let Ψn be a subset of Ψ that is
isometric to a root basis of a simple Lie algebra of rank n and let C denote
the Cartan matrix of Ψn .

The flows in Theorem 1 enjoy an invariant set on which their topological
entropy can be calculated. Σ has the structure of a Tn+1 bundle over Tn with
projection p. Let V = ker dp be the subbundle of vectors tangent to the Tn+1

fibres, and let V⊥ ⊂ T ∗Σ be the annihilator of V. Let V = V⊥ ∩ H−1( 1
2).

V is a compact invariant set, so let ϕt |V = Φt .

Theorem 2. The topological entropy of Φ1 is:

htop(Φ1) = max
I⊆Ψ

∣
∣
∣
∣
∣

∑

r∈I

wrr

∣
∣
∣
∣
∣
=: h∗. (1)

Clearly these flows, although integrable, have an interesting phase por-
trait.

Each flow from Theorem 1 can be normalized in a way that corresponds
to rescaling H so that the volume of V is unity. Let λ be the normaliza-
tion constant, and r(F) denote the regulator of an algebraic number field
naturally associated with Γ . Then

1 A Bogoyavlenskij-Toda lattice is called a periodic Toda lattice by some authors.
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Corollary 1.

htop(Φλ) =
[

r(F)

Πr∈Ψn ωr|r|
] 1

n
√

2 ω h∗

(det C)
1

2n

. (2)

Remark. When n = 1 and Ψ = A(1)
1 = {1,−1}, Σ is the 3-dimensional

mapping torus of a hyperbolic toral automorphism, A ∈ GL(2;Z), whose
eigenvalues have absolute value ξ±1. The number field F = Q(ξ), r(F) =
| ln ξ|, Ψ1 = {1}, ωr = 1 for all r ∈ Ψ , C = [2], h∗ = 1 and λ = | ln ξ|.
Formula 2 gives htop(Φλ) = | ln ξ|. On the other hand, V is diffeomorphic
to Σ × {±1}. On Σ × {±1}, Φ±λt is conjugate to the suspension flow of A.
Since the suspension flow has topological entropy | ln ξ|, this shows the
formula of Corollary 1 is correct in this simple case. This example was
studied in [5] by Bolsinov and Taı̆manov and is the first known example of
an integrable system with positive topological entropy.

There is a natural involution on the set of root bases, r → ř = r/|r|2.
Ψ and Ψ̌ are said to be dual root bases; Ψ is self-dual if Ψ̌ = Ψ . The root
bases B(1)

n and A(2)
2n−1, C(1)

n and D(2)
n+1, F(1)

4 and E(2)
6 , G(1)

2 and D(3)
4 are dual,

and all other root bases are self-dual. Theorem 2 and Corollary 1 allow us
to prove:

Theorem 3. Let [[u]] be the integer part of u. The following is a list of
h∗(Ψ ) for each root basis Ψ :

Ψ (rank = n) h∗ Πr∈Ψn |ωrr| ω det C htop(Φλ)

A(1)
n , n ≥ 1

√[[ n+1
2

]]
1 1 n + 1 r(Γ )

1
n

√

2
[[ n+1

2 ]]
(n+1)

1
n

B(1)
n , n ≥ 3

√
n − 1 2

3
2 (n−1) 2 2 r(Γ )

1
n 2

1
n

√
n − 1

C(1)
n , n ≥ 2

√
n
2 2n− 1

2 2 2 r(Γ )
1
n

√
n

D(1)
n , n ≥ 4

√
n−2

2 2n−3 2 4 r(Γ )
1
n 2− 2

n
√

n − 2

A(2)
2n , n ≥ 2

√
n 2

1
2 (3n−1) 2 2 r(Γ )

1
n

√
n

A(2)
2n−1, n ≥ 3

√
n−1

2 2n− 3
2 2 2 r(Γ )

1
n 2

1
n

√
n − 1

D(2)
n+1, n ≥ 2

√
n 2

1
2 (n−1) 1 2 r(Γ )

1
n

√
n

G(1)
2 , (n = 2) 1/

√
3 6

√
3 6 1 r(Γ )

1
n 2/3

1
4

A(2)
2 , (n = 1) 1/

√
2 2 2 2 r(Γ )

1
n

√
2

D(3)
4 , (n = 2) 1 2

√
3 2 1 r(Γ )

1
n 2/3

1
4

F(1)
4 , (n = 4) 1/

√
6 253 223 1 r(Γ )

1
n 2

3
4 3

1
4
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Ψ (rank = n) h∗ Πr∈Ψn |ωrr| ω det C htop(Φλ)

E(1)
6 , (n = 6) 1/

√
3 233 6 3 r(Γ )

1
n 23

1
4

E(2)
6 , (n = 4) 1/

√
3 233 6 1 r(Γ )

1
n 2

3
4 3

1
4

E(1)
7 , (n = 7) 1/

√
6 2532 12 2 r(Γ )

1
n 2

17
14 3

3
14

E(1)
8 , (n = 8) 1/2

√
15 27335 2215 1 r(Γ )

1
n 2

5
8 3

1
8 5

3
8

Say that h ∈ Homeo(T ∗Σ) is energy-preserving if h({H1 = 1
2 }) =

{H2 = 1
2 }. A priori, an energy-preserving conjugacy need not map V1

onto V2, so the topological entropies of Theorem 3 are not obvious invariants
of energy-preserving conjugacy. Invariance is proven below (Lemma 21),
and thus:

Theorem 4. Let ϕi
t be a hamiltonian flow contructed from the root basis

Ψi , i = 1, 2. If there is an energy-preserving conjugacy of ϕ1
t with ϕ2

t , then
either Ψ1 = Ψ2, or {Ψ1, Ψ2} = {A(2)

2n , D(2)

n+1} or n is even and {Ψ1, Ψ2} =
{A(1)

n , C(1)
n }.

Let λi be the normalization constant for ϕi
t . If there is an energy-

preserving conjugacy of ϕ1
λ1t with ϕ2

λ2t , then either Ψ1 = Ψ2 or Ψ2 = Ψ̌1 or

Ψ1, Ψ2 ∈ {C(1)
n , A(2)

2n , D(2)
n+1}.

To improve Theorem 4, we show that the homology spectrum of ϕi is the
graph of a quadratic form defined on H1(T ∗Σ;Z), and an energy-preserving
conjugacy of ϕ1 with ϕ2 implies that the two quadratic forms are congruent.
Except when n = 2, resolution of the congruence question appears to be
connected to a conjecture in transcendental number theory, namely,

Gelfond conjecture. (c.f. [25]) Let S be a set of logarithms of algebraic
numbers. If S is linearly independent over Q, then S is algebraically inde-
pendent over Q.

Theorem 5 and Corollary 3 rest, in fact, on a weaker version of Gel-
fond’s conjecture, namely that rational independence of logarithms of al-
gebraic numbers implies their homogeneous independence. On the other
hand, it is worth mentioning a more general conjecture due to Schanuel.
This conjecture says that if S ⊂ C is rationally-independent, then the field
Q(S, exp(S)) contains at least #S algebraically-independent elements. The
analogous conjectures for certain function fields have been proven, but the
number-theory conjectures remain unproven [2,13,28,25].

The Gelfond conjecture and this paper are connected through the identi-
fication of a maximal-abelian subgroup of GL(n +1;Z) with the unit-group
of a number field of degree n + 1. To explain, let F/Q be a totally real,
normal extension of Q of degree n + 1, let G be the Galois group of F/Q,
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let V = RG be the group ring, let t̄ = ∑σ∈G σ and let Vo = ker t̄ be
the augmentation ideal of V . Let G∗ be the basis of V ∗ dual to G and
Ĝ = {σ̂ |Vo : σ ∈ G}. For each x ∈ QG/Qt̄, let R̄′

x : V ∗
o → V ∗

o be the linear
map induced by right-translation by x. In addition, let Ω := {wrr : r ∈ Ψ }
and letB be the subset of linear isomorphisms φ : V ∗

o → h∗ which satisfy
φ(Ĝ) = Ω. The hamiltonians of Theorem 1 are parameterized by φ ∈ B
– hence the (n + 1)! in the first sentence – so Hφ (resp. ϕ

φ
t ) denotes the

hamiltonian (resp. flow) constructed with the bijection φ. Finally, let O(h∗)
be the orthogonal group of (h∗, 〈〈, 〉〉). If φ1, φ2 ∈ B, when is there an
energy-preserving topological conjugacy of ϕ

φ1
t with ϕ

φ2
t ?

To answer the preceding question, recall that the unit-group of F is
a natural ZG-module. Let A ⊂ QG be the subring of elements that are
integral with respect to this representation. It is known that ZG + Qt̄ ⊆ A
and (n + 1)A ⊆ ZG +Qt̄.

The following theorem, when n = 2, is a consequence of Gelfond’s
classical theorem that the ratio of logarithms of two algebraic numbers is
either rational or transcendental [15].

Theorem 5. If n ≥ 3, assume the Gelfond conjecture. If the hamiltonian
flows of Hφ1 and Hφ2 are topologically conjugate by an energy-preserving
conjugacy then there is a unit r of the ring So = A/Qt̄ such that

µ = φ1 ◦ R̄′
r ◦ φ−1

2 ∈ O(h∗).

Theorem 5 shows how to define an equivalence relation ∼ on B that is
possibly coarser than the equivalence relation induced by energy-preserving
conjugacy. Section 4 proves

Corollary 2. Let F/Q be a normal cubic extension. If

1. Ψ = A(1)

2 or Ψ = C(1)

2 , then B contains a single equivalence class;
2. Ψ = G(1)

2 , thenB contains 2 equivalence classes.

Corollary 3. Assume the Gelfond conjecture. Let F/Q be a normal totally-
real quartic extension. If

1.i G = Z2 ⊕ Z2 and Ψ = A(1)
3 or Ψ = B(1)

3 , then B contains 3 equiva-
lence classes;

1.ii G = Z2 ⊕ Z2 and Ψ = C(1)
3 , thenB contains 6 equivalence classes;

2.i G = Z4 and Ψ = A(1)
3 , then B contains 2 equivalence classes;

2.ii G = Z4 and Ψ = B(1)
3 or Ψ = C(1)

3 , then B contains 3 equivalence
classes.

In both corollaries one also knows that if φi ∈ Bi – where Ψi are not
necessarily isometric –, then there is an energy-preserving conjugacy of ϕ

φ1
t

with ϕ
φ2
t iff Ψ1 = Ψ2 and φ1 ∼ φ2. The conjugacies of Corollaries 2 and 3
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arise from a natural action of the Galois group G on T ∗Σ and are analytic.
The sharpness of these results is due to the triviality of the unit group of So
– it is just ±G +Qt̄.

Remark (c.f. Example 4 of Sect. 4.3). To illustrate the construction behind
Theorem 1 take the case where Γ is the group generated by

A1 =
[

0 1 0
1 0 1
0 1 1

]

, A2 =
[

0 −1 1
−1 1 0
1 0 0

]

.

Γ is conjugate by a T ∈ SL(3;R) to the group Γ ′ generated by

B1 =
[

α1 0 0
0 α2 0
0 0 α3

]

, B2 =
[

α2 0 0
0 α3 0
0 0 α4

]

,

where α j = ζ j+ζ− j for j = 1, 2, 3 and ζ is a primitive 7-th root of unity and
α4 = α1. Let N = T(Z3) and ∆ = Γ ′ � N so that T ∗Σ = T ∗(∆\R2 × R3).
If the matrix M with columns Mi is defined to be

M =
[

ln |α1| ln |α2| ln |α3|
ln |α2| ln |α3| ln |α4|

]

,

while (a, A, b + N, B) ∈ T ∗
R

2 × T ∗
T

3 are the coordinates of P ∈ T ∗Σ̂
and v ∈ R2, then

Av(P) = 〈v, A〉, γi(P) = B2
i exp(2〈a, Mi〉),

define analytic functions on T ∗Σ whose Poisson brackets are

{Av, Av′ } = {γi, γ j} = 0, {γ j, Av} = 2〈v, M j 〉 γ j .

Let vi be vectors such that 〈vi, M j〉 = δij for i, j = 1, 2. A calculation
shows that

H = A2
v1

+ Av1 Av2 + A2
v2

+ γ1 + γ2 + γ3

enjoys the first integrals

F = A2
v1

Av2 + Av1 A2
v2

+ Av1(γ2 − γ1) − Av2(γ1 + γ3),

and
f = (ln |B1|, ln |B2|, ln |B3|) + L,

where x ∈ L iff xi = a1 ln |αi| + a2 ln |αi+1| and aj ∈ Z. If f “extends”
smoothly to the set B1 B2B3 = 0 – and it does – then one sees H is completely
integrable in the sense of Liouville. Indeed, what makes this construction
work is that there is a Lie algebra isomorphism

Avi → ξi, γ j → δ j,
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where δ1 = exp(2x1), δ2 = exp(2x2), δ3 = exp(−2x1 −2x2) and (xi, ξi) are
canonical coordinates on T ∗

R
2. H is the pullback of the A(1)

2 Bogoyavlenskij-
Toda hamiltonian

T = ξ2
2 + ξ1ξ2 + ξ2

2 + δ1 + δ2 + δ3,

and F is the pullback of a first-integral of T. H is, up to a scalar multiple,
one of the hamiltonians constructed in Theorem 1.

One notices an arbitrariness in the construction of H . If one takes a
permutation ρ of {1, 2, 3} and uses the vectors v′

i , where 〈v′
i , Mρ( j)〉 = δij

for i, j = 1, 2, in place of vi to define H , then the new hamiltonian H ′
is integrable and looks very much like H . However, to determine if the
hamiltonian flow of H ′ is the same as that of H requires the more precise,
more intrinsic construction provided by algebraic number theory.

Similar comments apply to the C(1)
2 and G(1)

2 Bogoyavlenskij-Toda
hamiltonians.

1.1. Background

Before the 20-th century, mathematicians working on dynamical problems
were largely concerned with integrating differential equations. This point
of view is expressed in Liouville’s theorem concerning the integrability
in quadratures of an n-degree of freedom system with n involutive and
independent first integrals. The discovery of transverse homoclinic points
and the resulting dynamical complexity showed that integrable systems are
“rare.” And much work has gone into making precise the meaning of the
word “rare.” (c.f. [30,24,27]). Research on integrable systems went into
a lull until, in the 1960s, the partial differential equation that describes
a 1-dimensional shallow-water wave was shown to be integrable. Lax [26]
put the integrability of the KdV equation into perspective by showing that
the equations are equivalent to an operator evolution equation L̇ = [L, A].
The eigenvalues of L are conserved quantities of motion.

Flaschka [14] showed that the equations of motion that describe n par-
ticles on the real line that interact via an exponential, repulsive potential
also enjoys a so-called Lax-pair presentation. Hénon [17] showed that these
first integrals are independent. This dynamical system, called the (periodic)
Toda lattice, also has a “continuum limit” which is the KdV equation [17].
Bogoyavlenskij exposed an underlying Lie-algebraic structure by showing
that a Toda-like lattice can be constructed for any set of admissible roots
of a simple Lie algebra [3]. Adler, Kostant and Symes built on this by
showing that Lie-algebraic structures also explain the integrability of the
Bogoyavlenskij-Toda lattices [22,1,38]. The subsequent literature on this
topic is enormous (c.f. [24,34]).

This paper originates from the following question: if Σ is a C∞ mani-
fold, does the existence of a smoothly integrable geodesic flow on T ∗Σ
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impose restrictions on the topology of Σ? In the category of compact an-
alytic manifolds, the Kozlov-Taı̆manov theorem places strong restrictions
on π1(Σ) – it must be almost abelian – and on H∗(Σ) [23,39,40]. In the
C∞ category, the potential pathology of the singular set of a smooth map
has frustrated a generalization of the Kozlov-Taı̆manov theorem [9]. Pater-
nain’s approach [31–33], based on the idea that integrable systems should
have zero topological entropy, has been vitiated by the surprising example
of Bolsinov and Taı̆manov which is smoothly integrable and has positive
entropy (c.f. [5,12]). In a couple important respects, the examples in this
paper are similar to those in [5,7–10].

1.2. Outline

Theorem 1 is proven by constructing a 2n +1-dimensional solvable Poisson
subalgebra s of C∞(T ∗Σ). The Bogoyavlenskij-Toda hamiltonian and its
first integrals are located inside the symmetric algebra of s. This construction
provides only n +1 involutive and independent first integrals, so we need an
additional n first integrals that are independent and commute with the first
n + 1. This is done by finding a second, n-dimensional abelian subalgebra
a of C∞(T ∗Σ) that centralizes s. The algebras s and a exist ultimately
because the universal cover Σ̃ admits the structure of a solvable Lie group.
This observation is pursued in the Remark after the proof of Theorem 1,
where it is also shown how the constructions can be understood in terms of
the traditional momentum map.

In Sect. 3, the topological entropies of Theorem 3 are computed. Sec-
tion 4 uses asymptotic homology to prove the invariance of the entropies,
and the homology spectrum of the flows to prove Theorem 5 and its corol-
laries.

2. The construction

2.1. Poisson geometry and the momentum map

Recall a few important concepts. Let Σ be a real-analytic (= Cω) mani-
fold. The smooth functions on the cotangent bundle of Σ, C∞(T ∗Σ), has
two canonical algebraic structures: it is an abelian algebra when equipped
with the natural operations of point-wise addition and multiplication; and,
coupled with the canonical Poisson bracket, {, }, (C∞(T ∗Σ), {, }) is a Lie al-
gebra of derivations of the algebra C∞(T ∗Σ). A hamiltonian H ∈ C∞(T ∗Σ)
induces a vector field YH := {., H}. We are interested in the situation
where YH has “many” independent first integrals. If F ⊂ C∞(T ∗Σ), let
dFP = span {d fP : f ∈ F } and let Z(F ) = { f ∈ F : {F , f } ≡ 0}.
Typically F is a Lie subalgebra of C∞(T ∗Σ), and Z(F ) is the centre of F .
Let k = sup dim dFP , l = sup dim dZ(F )P . Let us say P ∈ T ∗Σ is F -
regular if there exist f1, . . . , fk ∈ F such that P is a regular value for the
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map F = ( f1, . . . , fk) and f1, . . . , fl ∈ Z(F ); if P is not F -regular then
it is F -critical. Let L(F ) be the set of F -regular points.

H will be proper for the purposes of this paper.

Definition 1. [c.f. [4]] Say that H ∈ C∞(T ∗Σ) is integrable if there is
a Lie subalgebra F ⊂ C∞(T ∗Σ) such that:

(I1) H ∈ Z(F );
(I2) k + l = dim T ∗Σ and L(F ) is an open and dense subset of T ∗Σ.

We will say that F is an integrable subalgebra. If F ω = F ∩Cω(T ∗Σ)
is also an integrable subalgebra and H ∈ F ω then we say H is real-
analytically integrable.

See [4] for an analogous definition and further explanation and refer-
ences. The usual definition of complete integrability or non-commutative
integrability are special cases of Definition 1 with F = span { f1, . . . , fk}
and l = k (resp. l ≤ k) and the regular-point set of F = ( f1, . . . , fk) is
dense. Definition 1 is both more intrinsic, and more suited to the examples
of the present paper.

Definition 1 is equivalent to the integrability of the flow Φt of YH in
the sense of the first sentence of the present paper. To see this, let G be
the abelian group of C∞ diffeomorphisms of T ∗Σ generated by the com-
plete flows of Y f , f ∈ Z(F ). The subalgebra Z(F ) defines a nonsingular
distribution on L(F ), and by the Sussman-Stefan orbit theorem [20], the
orbits of G are immersed C∞ submanifolds. Condition (I2) implies that
these orbits are actually embedded submanifolds of L(F ). Condition (I2)
and the properness of H also imply that for each point in L(F ), there is
a G-invariant open neighbourhood, U , and an action ofTl on U , such that the
T

l-orbits and G-orbits coincide. Since H ∈ Z(F ), the flow mapping Φt is
a 1-parameter subgroup of G. Thus there is a C∞ atlas A = {ϕ : U →
T

l × Dk} of L(F ), where Dk is an open disk in Rk, and A satisfies the
universal property that for all 1-parameter subgroups gt of G and x ∈ Tl,
y ∈ Dk: ϕ ◦ gt ◦ ϕ−1(x, y) = (x + tξ(y), y) where ξ is smooth. From this
discussion it follows that L(F ) has a natural structure of a Tl bundle over a
smooth k-manifold B. It is possible that L(F ) is not a trivial bundle, as in
the examples of this paper.

2.2. Algebraic preliminaries

If Γ is a subgroup of GL(n + 1;Z), let G be the semi-direct product of
Γ with Zn+1. If Γ is R-split and acts irreducibly on Zn+1, then there is a
totally real algebraic number field F of degree n + 1, with integers O and
unit group U, and an embedding of G into the semi-direct product of U
with O [36]. It is apparent that the most natural way to construct the mani-
folds Σ is to employ algebraic number theory. Thus, let us record:
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Standing notation/hypotheses :

• F is a totally real algebraic number field of degree n + 1 over Q;
• E is the splitting field of F;
• G is the set of embeddings (Q-isomorphisms) σ : F → R;
• O is the ring of integers of F and U is the group of units of O;
• V = ⊕σ∈G Rσ is the real vector space with basis G;
• ε : V → R is the “augmentation map” that maps G to 1.
• Vo =∑σ,τ∈G R(σ − τ) is the kernel of the “augmentation map”;
• � : U → Vo is the “logarithm map” defined by �(u) =∑σ∈G ln |σ(u)| σ ;
• η : O → V is the group isomorphism η(α) =∑σ∈G σ(α) σ .

2.3. The configuration spaces Σ

The following are restatements of well-known facts from algebraic number
theory [29]:

Lemma 1. Let L = �(U). Then L is a discrete, cocompact subgroup of
Vo that is isomorphic to Zn and there is an index 2 subgroup U+ such that
� : U+ → L is an isomorphism.

Lemma 2. Let N = η(O). Then N is a discrete, cocompact subgroup of V .

Define an action of U on Σ̂ = Vo ⊕ V/N by:

u ∗ (x, y + N) = (x + �(u),
∑

σ∈G

〈y, σ̂〉σ(u)σ + N), (3)

for all u ∈ U, x ∈ Vo and y +N ∈ V/N. Since U is the unit group of O, this
action is well-defined and each u ∈ U acts as an analytic diffeomorphism
of Σ̂. The action of U+ is free, cocompact and uniformly discrete so
Σ = U+\Σ̂ is a compact real-analytic manifold. Let ∆ = U+ � O be
the semi-direct product of U+ with O. It is clear that the fundamental
group of Σ is isomorphic to ∆, and H1(Σ;Z) � L. It is also clear that
the covering π : Σ̂ → Σ is the universal abelian covering of Σ, and the
deck-transformation group of π is L.

The covering map T ∗Σ̂ → T ∗Σ will be denoted by Π. Let (x, y,X,Y)

denote canonical coordinates on T ∗Σ̂, where x ∈ Vo, X ∈ V ∗
o , y ∈ V/N

and Y ∈ V ∗. The Vo-valued 1-form dx and the V ∗
o -valued map X are

U+-invariant (see next section), so the map P̂ : T ∗Σ̂ → T ∗Vo given by
P̂((x, y,X,Y)) = (x,X) descends to define a submersion P : T ∗Σ →
T ∗(Vo/L) given by P(∆(x, y,X,Y)) = (x +L,X). The following lemma
is immediate:

Lemma 3. The covering Π : T ∗Σ̂ → T ∗Σ is the universal abelian cover-
ing of T ∗Σ. The deck transformation group Deck(Π) is L. The projection
P : T ∗Σ → T ∗(Vo/L) induces a natural isomorphism of first integral
homology groups.
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Let u ∈ U+ and σ ∈ G. The diffeomorphism of Σ̂ defined by equa-
tion (3) will also be denoted by u. Let yσ := 〈y, σ̂〉 denote the σ -component
of y. It is immediate that

u∗(dyσ ) = σ(u) dyσ . (4)

Let T ∗u be the canonical diffeomorphism of T ∗Σ̂ induced by u. Equation (4)
implies that

(T ∗u)∗Yσ = σ(u)−1 Yσ , (5)

where Yσ = 〈σ,Y〉 is the value of the covector Y evaluated at σ .
Fix a positive integer bσ , and define γσ : T ∗Σ̂ → R by

γσ = exp(2bσ 〈x, σ̂〉) Y2bσ
σ . (6)

Equations (3) and (5) imply that γσ is a U+-invariant analytic function.
Hence, γσ will be regarded as an analytic function on T ∗Σ.

Let b = lcm(bσ : σ ∈ G) and let cσ = b/bσ . Because
∑

σ∈G σ̂ |Vo = 0,
it follows that

k = Πσ∈G γ cσ
σ = Πσ∈G Y2b

σ , (7)

defines an analytic function on T ∗Σ.
For each v ∈ Vo, let Xv be the induced linear function on V ∗

o . Xv defines
a function on T ∗Σ, and

{γσ,Xv} = 2bσ 〈v, σ̂〉γσ . (8)

Equations (6) and (8) imply that

Lemma 4. The subspace s of Cω(T ∗Σ) spanned by {γσ : σ ∈ G} and
{Xv : v ∈ Vo} is a solvable Lie subalgebra of dimension 2n + 1.

Let Sym(s) denote the symmetric algebra on s∗; it is naturally viewed as
the set of functions on T ∗Σ that are polynomial combinations of elements
in s. Clearly, Sym(s) is a Lie subalgebra of Cω(T ∗Σ).

2.4. The Lie algebras s and t

Let Ψ be a root basis of (h∗, 〈〈, 〉〉). For each r ∈ Ψ , define the function

δr = c2
r exp(2〈q, r〉), (9)

for all q ∈ h and cr ∈ R. For s ∈ h, let ξs be the linear function on h∗
induced by s. Let [, ] denote the canonical Poisson bracket on h × h∗, so
that:

[δr, ξs] = 2〈s, r〉 δr (10)

for all s ∈ h and r ∈ Ψ . Let Ξ = T ∗h× Rn+1.
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Lemma 5. The subspace t ⊂ Cω(Ξ) spanned by the functions {δr : r ∈ Ψ }
and {ξs : s ∈ h} is a 2n+1-dimensional solvable Lie subalgebra of Cω(Ξ).

Let Sym(t) be the symmetric algebra of t∗. Sym(t) contains the distin-
guished Bogoyavlenskij-Toda hamiltonian:

T(q, ξ, c) := 1

2
〈〈ξ, ξ〉〉 +

∑

r∈Ψ

δr . (11)

The complete integrability of the Bogoyavlenskij-Toda lattices is by no
means obvious. Here is a sketch of this fact, based on Bogoyavlenskij’s
generalization of Flaschka’s transformation, which also shows that the in-
tegrals lie in Sym(t). View h as the real part of a Cartan subalgebra of
a simple Kac-Moody algebra g. For each root r ∈ Ψ , there are elements e±r
such that [h, e±r] = ±〈h, r〉e±r for all h ∈ h. Let κ : h∗ → h denote the
linear isomorphism induced by the Cartan-Killing form 〈〈, 〉〉. Hamilton’s
equations for T are equivalent to the Lax equations L̇ = [L, A] where
L = κξ +∑r∈Φ δre−r + e, A = −κξ − e and e = ∑r∈Φ er . From this it
follows that Trace ρ(L)k is a first integal of T for any representation ρ of g.
These integrals suffice for the complete integrability of T. It is also apparent
that these first integrals are polynomials in ξ and δr . See [3,34] for further
information.

Let I denote the algebra of integrals of T contained in Sym(t). The
following lemma is immediate:

Lemma 6. Let L(I) ⊂ Ξ be the set of regular points of I. Then L(I) is
an open, real-analytic set.

Let wr := ωr/ω for each r ∈ Ψ , where ω = lcm(ωr : r ∈Ψ ). Let φ be
a linear map φ : V ∗

o → h∗ that is also a bijection from Ĝ to Ω = {wrr :
r ∈ Ψ }. Write

φ(σ̂) = wrr, (12)

and let φ′ : h→ Vo denote the transpose of φ. The map Φ : t→ s induced
by φ is defined by

Φ(δr) := γσ, (13)
Φ(ξs) := Xv, (14)

where φ(σ̂) = wrr and v = φ′(s).

Lemma 7. Φ is a Lie algebra isomorphism iff for all σ ∈ G, bσ = ω/ωr
where r ∈ Ψ is the unique root such that φ(σ̂) = wrr.

Proof. Φ([δr, ξs]) = 2〈s, r〉γσ , while {Φ(δr),Φ(ξs)} = 2bσ 〈v, σ̂ 〉γσ where
φ(σ̂) = wrr and v = φ′(s). On the one hand, bσ 〈v, σ̂〉 = bσ 〈φ′(s), σ̂〉 =
bσwr〈s, r〉, while on the other hand, we require that bσ 〈v, σ̂ 〉 = 〈s, r〉. This
proves the assertion.
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Since ω is the lcm of the integers ωr , bσ is an integer and so the functions
γσ are real-analytic for all σ ∈ G. Thus Φ extends to an isomorphism –
denoted also by Φ – of the respective symmetric algebras. There are a num-
ber of distinguished elements in Sym(s). To describe the most important
one, let κ : h∗ → h be the linear isomorphism induced by 〈〈, 〉〉, and define
Q = φ′κφ : V ∗

o → Vo. Let H = Φ(T); H is written as

H = 1

2
〈QX,X〉 +

∑

σ∈G

γσ . (15)

= 1

2
〈QX,X〉 +

∑

σ∈G

exp(2bσ 〈x, σ̂〉)Y2bσ
σ .

Remark. An inspection of Figs. 3 and 4 shows that the only root bases
for which ωr = 1 for all r are the root bases A(1)

n and D(2)
n+1. Therefore,

these are the only root bases for which the hamiltonian H is a fibre-wise
positive-definite quadratic form.

It is also apparent that the definition of Φ and H is unique up to the
choice of bijection φ. We return to this in Sect. 4.

2.5. The algebra a of first integrals

Let ŝ = Π∗s. Since the functions in ŝ are independent of y, the conjugate
momenta Y are first integrals of ŝ. Thus:

Lemma 8. {Yw, ŝ} ≡ 0 for all w ∈ V, where Yw is the linear function on
V ∗ induced by w.

Let U = {P ∈ T ∗Σ : Πσ∈G γσ �= 0}. For P ∈ U, let

f(P) =
∑

σ∈G

ln |Yσ |σ + L. (16)

Lemma 9. f : U→ V/L is an analytic submersion.

Proof. It suffices to show that f is well-defined. From the description of
the action of U+ (Equation (5)) and the definition of U, it is clear that f is
well-defined.

Let C∞
0 (V/L) be the set of smooth functions on V/L with compact

support. Let F ⊂ C∞(R) be the set of functions which vanish on (−∞, c]
for some c > 0. Let

a = span
{
g : g(P) = ϕ(k(P)) h ◦ f(P) where h ∈ C∞

0 (V/L), ϕ ∈ F
}
.

Lemma 10. a is an abelian subalgebra of C∞(T ∗Σ) that commutes with s.
Moreover, dim daP = n + 1 for all P ∈ U.
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Proof. From the definition of k (Equation (7)) it is apparent that {k �= 0}
= U. Therefore, if g ∈ a and g(P) = ϕ(k(P)) h ◦ f(P), then ϕ ◦ k vanishes
to all orders on an open neighbourhood of Uc. Since h has compact support,
it follows that g is smooth. Thus a ⊂ C∞(T ∗Σ).

Since any function in Π∗a is a function of Y alone, a is commutative
under the Poisson bracket. Lemma 8 implies that {a, s} ≡ 0.

Let Po ∈ U and let k(Po) = c. Since c > 0, there is a ϕ ∈ F that is
identically 1 on [ 1

2c, 3
2c]. Let D ⊂ V/L be a small open disk around f(Po),

and let U ⊂ U be a small open disk around Po such that k(U) ⊂ [ 1
2 c, 3

2 c] and
f(U) ⊂ D. The multi-valued function ln |Yσ | can be made single-valued
on D by choosing a particular lift of D to V . Let hσ be a smooth function in
C∞

0 (V/L) that extends ln |Yσ | on D. Finally, let gσ (P) = ϕ(k(P)) hσ ◦ f(P);
it is clear that gσ ∈ a for all σ ∈ G and it is also clear that span {dgσ P :
σ ∈ G} = im d fP for all P ∈ U near Po. Since Po ∈ U was arbitrary, the
previous lemma implies that dim daP = n + 1 for all P ∈ U.

Lemma 11. Let f = a+ s. Then dim dfP = 3n + 1 for all P ∈ U.

Proof. Let dxσ be the 1-form on Vo/L induced by σ̂ on Vo. The sole linear
dependence relation amongst these 1-forms is

∑
σ∈G dxσ = 0. From the

Equation (6) and the definition of s,

dsP = span
{
dXv, dxσ + d ln |Yσ | : v ∈ V ∗

o , σ ∈ G
}
,

for all P ∈ U. This shows that dim dsP = 2n + 1.
On the other hand, the previous lemma showed that

daP = span {d ln |Yσ | : σ ∈ G}.

It is clear that daP ∩ dsP = span {∑σ∈G d ln |Yσ |} = span {dk} and is
1-dimensional. Since daP has dimension n + 1, the lemma now follows.

Proof of Theorem 1, parts (i) and (ii). Fix the root system Ψ , the linear
isomorphism φ : V ∗

o → h∗ (Equation (12)) and hence the isomorphism
Φ : Sym(t) → Sym(s) (Equation (13)). Let b = Φ(I) ⊂ s be the algebra
of first integrals of H obtained from the Toda first integrals. Let F = a+b.
The F -regular-point set L(I) is an open real-analytic set (Lemma 6) and
on this set dim dI = n. In addition, dbP ∩ daP = {0} since the Toda
hamiltonian possesses no non-trivial first integrals that are functions of the
potentials δr alone. It follows from the previous lemma that L(F ) is an
open real-analytic set and that dim dFP = 2n + 1 = dim Σ. Since H is
a proper function and F is abelian, conditions (I1) and (I2) of Definition 1
are satisfied. This proves part (i).

Part (ii) is proven in the remark immediately following Lemma 7.
Part (iii) is proven in Sect. 3.
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Remark. There is an alternative proof of Theorem 1 that proceeds by not-
ing that Vo × V admits the structure of a solvable Lie group S where
multiplication is defined by:

(x, y) ∗ (x ′, y′) := (x + x ′, y +
∑

σ∈G

exp(〈x, σ̂〉) y′
σ σ), (17)

for all x, x ′ ∈ Vo and y, y′ ∈ V . A finite-index subgroup, ∆1, of ∆ = U+� O
embeds as a discrete, cocompact subgroup of S so Σ is finitely-covered
by ∆1\S. The linear space Lie(S)∗ can be identified with V ∗

o ⊕ V ∗, so the
momentum map of S’s left (resp. right) action on T ∗S, in the coordinates
P = (x, y,X,Y), is:

ψL(P) = X ⊕
∑

σ∈G

exp(〈x, σ̂ 〉)Yσ σ̂, (18)

ψR(P) =


X +
∑

σ∈G

yσYσ σ̂



⊕ Y. (19)

Let s̃ (resp. ã) denote the algebra s (resp. a) lifted to T ∗S. Let σ2bσ be the
polynomial function on Lie(S)∗ defined by σ2bσ (X ⊕ Y) = 〈σ,Y〉2bσ . Let
so ⊂ Cω(Lie(S)∗) be the subalgebra spanned by Vo and {σ2bσ : σ ∈ G}.
Then it is clear that s̃ = ψ∗

Lso.
On the other hand, if we let identify C∞(V ∗) with the abelian subalgebra

of C∞(Lie(S)∗) generated by the linear functions V , then ã is a subalgebra
of ψ∗

RC∞(V ∗).
Finally, the coadjoint orbits ofS in Lie(S)∗ are non-naturally identified

with the so-called “Toda” orbits in the loop algebra L(g) via the map φ

(see [34]). It follows then that b̃ = ψ∗
L(t), where t ⊂ C∞(L(g)∗) is the

algebra of integrals of the Toda lattice.

3. Entropy and the dynamics on the singular set

Let Ĥ = Π∗ H ∈ Cω(T ∗Σ̂) denote the hamiltonian induced by H (Equa-
tion (15)) and let V̂⊥ = Π−1(V⊥). The hamiltonian flow of Ĥ is

ϕ̂t(x, y + N,X, 0) = (x + tQX, y + N,X, 0), (20)

for all P = (x, y + N,X, 0) ∈ V̂⊥. Thus ϕt |{X = const.,Y = 0} is
topologically conjugate to the flow ϕ̂v

t : Σ̂ → Σ̂ defined for all (x, y + N)

∈ Σ̂ by

ϕ̂v
t (x, y + N) = (x + tv, y + N), (21)

where v = QX. Both flows are U+-equivariant and the conjugacy factors
through U+. Let ϕv

t : Σ → Σ be the flow induced by ϕ̂v
t . Part (iii) of



530 L.T. Butler

Theorem 1 now follows by taking v ∈ L and ϕv
1 restricted to the invariant

fibre V/N = p−1(0+L). In addition, the topological entropy of Φ1 = ϕ1|V
is

htop(Φ1) = max
v : v=QX and 〈QX,X〉=1

htop(ϕ
v
1). (22)

Lemma 12.

htop(ϕ
v
1) =
∑

σ∈G

〈v, σ̂〉+, (23)

where u+ = 1
2 (u + |u|).

Proof. Let ϕ̃v
t : Σ̃ → Σ̃ be the flow on the universal cover of Σ induced

by ϕ̂v
t . According to the remark after the proof of Theorem 1, Σ̃ = Vo × V

admits the structure of a solvable Lie group S. Let Rv(x, y) = (x + v, y),
Lv(x, y) = (v, 0) ∗ (x, y) and let Av = Rv ◦ L−v. The transformation
Rv : S→ S is right-translation by the element (v, 0), Lv is left-translation
by the same element and Av is an inner autmorphism ofS. Then ϕ̃v

1 = Lv Av

can be written as an affine transformation ofS. Assume first that ∆ embeds
as a subgroup of S so that Σ = ∆\S. By Theorem 20 of [6] and the
following remark, htop(ϕ

v
1) = htop(Av). By the Bowen formula, Corollary 16

of [6], htop(Av) is the sum of the positive logarithms of the eigenvalues of
dAv|TeS. From the explicit form of multiplication in S (Equation (17)),
this is htop(Av) =∑σ∈G〈v, σ̂〉+.

In the general case, there is a finite index normal subgroup ∆1 of ∆
that embeds in S. ϕ̃v

1 covers a diffeomorphism A of Σ1 := ∆1\S. The
previous paragraph shows that htop(A) is given by the right-hand side of
Equation (23). Since A covers ϕv

1 and ∆/∆1 is a compact group, their
entropies are equal by Theorem 19 of [6].

Here is a more amenable form for Equation (23). Let s = κφ(X) and
v = QX, then 〈〈s, s〉〉 = 〈QX,X〉 and 〈v, σ̂ 〉 = 〈s, wrr〉 where φ(σ̂) =
wrr. Equation (23) implies that

htop(Φ1) = max
〈〈s,s〉〉=1

∑

r∈Ψ

〈s, wrr〉+.

For each subset I ⊆ Ψ , let rI := ∑r∈I wrr, where a sum over the empty
set is zero. Let h : h → R be defined by h(s) = ∑r∈Ψ 〈s, wrr〉+. It is
clear that h(s) ≥ 〈s, rJ 〉 for all J ⊆ Ψ , and that there is an I = I(s) such
that h(s) = 〈s, rI 〉. The maximum value of h on the unit sphere, call it h∗,
is therefore the maximum over all subsets I of Ψ of the maximum value
attained by rI on the unit sphere. Since the latter is |rI |

h∗ = max
I⊆Ψ

∣
∣
∣
∣
∣

∑

r∈I

wrr

∣
∣
∣
∣
∣
.

Let H(I ) := |∑r∈I ωrr| for each I ⊆ Ψ . Then
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Lemma 13.

h∗ = htop(Φ1) = 1

ω
max
I⊆Ψ

H(I ).

3.1. Calculation of h∗

We will now compute H∗ = max{ H(I ) : I ⊆ Ψ }, hence h∗, for each root
basis. To derive H∗ a few lemmas are needed that give necessary conditions
for a set I to be a maximum point for H. Before stating these lemmas, recall
that for each root basis Ψ there is a labeled graph Γ(Ψ ), called the Dynkin
diagram, whose vertices are the points of Ψ . A pair of distinct vertices r, s
have 4〈〈r, s〉〉2/|r|2|s|2 edges connecting them, and if |r| > |s| then there is
an arrow pointing from r to s. The vertex r has the label ωr .

Let I ⊂ Ψ be non-empty. The restricted Dynkin diagram of I , Γ(I ), is
the labeled subgraph of Γ(Ψ ) that contains all vertices in I and edges (r, s)
if r, s ∈ I . For each v ∈ Ψ , let ST(v), called the star of v, be the labeled
subgraph of Γ(Ψ ) that contains v, all vertices r ∈ Ψ such that 〈〈r, v〉〉 �= 0
and all edges incident to v. ST(v, I ) = ST(v) ∩ Γ(I ) is the star of v in I ,
and VST(v, I ) denotes the vertex set of ST(v, I ) less {v}.

Let H(I ) = H(I )2 and let H∗ = max{H(I ) : I ⊆ Ψ }. Since

H(I ) =
∑

r,s∈I

ωrωs〈〈r, s〉〉,

if v ∈ I , then one has

H(I ) = H(I − {v}) + ωv



ωv|v|2 +
∑

r∈VST(v,I )

2ωr〈〈v, r〉〉


 . (24)

The following is a trivial consequence of the linear dependence relation∑
r∈Ψ ωrr = 0:

Lemma 14 (Complementarity principle). H(I c) = H(I ).

Lemma 15. (see Fig. 1) Assume that a, b, c, d ≥ 0. Let

I.i b ≤ a and ST(v, I ) = I.i;
I.ii b ≤ 2a and ST(v, I ) = I.ii;
I.iii b ≤ 3a and ST(v, I ) = I.iii;
I.iv b ≤ a and ST(v, I ) = I.iv;
I.v b ≤ a and ST(v, I ) = I.v;
II b ≤ a + c and ST(v, I ) = II ;
III b ≤ a + c + d and ST(v, I ) = III;
IV b ≤ 2a + c and ST(v, I ) = IV;
V b ≤ a + c and ST(v, I ) = V;
VI 2b ≤ 2a + c + d and ST(v, I ) = VI;
VII b ≤ 2a + 2c and ST(v, I ) = VII;
VIII 3b ≤ 3a + c and ST(v, I ) = VIII;
IX b ≤ 3a + c and ST(v, I ) = IX;
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a                                  b 

I.ii) vr

a                                  b

I.iii) vr

a                                  b 

I.iv) vr

a                                  b

I.v) vr

a                                  b
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III)
v r

ab

s

t

c

d

II) v r

ab

s

c

VI)

s

t

d

c
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a                                b                   

vr s

a                                b                                 c

VII)

a                                b                                    c

vr s
VIII)

a                                b                                    c

vr sIX)

IV)

V)

a                                b                                    c

vr s

a                                b                                    c

vr s

Fig. 1. Vertex stars

Then H(I − {v}) ≥ H(I ) with equality (resp. strict inequality) implying
equality (resp. strict inequality).

Proof. Case (I.i). From the Dynkin diagram (Fig. 1) and Equation (24),
H(I ) = H(I − {v}) + b

(
b|v|2 + 2a 〈〈v, r〉〉). Since only one edge joins r

to v, r and v have the same length. This forces 2〈〈v, r〉〉 = −|v|2. Thus:
H(I ) = H(I − {v}) + b(b − a)|v|2 ≤ H(I − {v}).
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Cases (I.ii–IX) are proved similarly.

Say that I ∈ H−1(H∗) is a maximizer.

Lemma 16. If I ⊂ Ψ is a maximizer, then for all v ∈ I c, 〈〈v, I〉〉 �= 0.

Proof. If there is a v �∈ I such that 〈〈v, I〉〉 = 0, then Equation (24) implies
H(I ∪ {v}) = H(I ) + b2|v|2 > H(I ).

Lemma 17. Let ST(v, Ψ) ∈ {II, . . . , IX}. If I is a maximizer, then either
v ∈ I or r ∈ I .

Proof. If r, v �∈ I , then 〈〈v, I〉〉 = 0, which contradicts the previous lemma.

Lemma 18. If I is a maximizer, then for each v ∈ I , ST(v, I ) has one of
the following restricted Dynkin diagrams (see Fig. 2).

v

                                   b

I)

v

b                                  b

I.i) r

Fig. 2. Vertex stars in a maximizer

Proof. Let I be a maximizer. If ST(v, I ) = I for all v ∈ I , then there is
nothing to prove. Therefore, assume that Γ(I ) contains a subgraph with one
or more edges. First, we consider the case when Γ(I ) contains a subgraph
with two or more edges. By inspection of the Dynkin diagrams in Figs. 3
and 4 there is a v ∈ I such that ST(v, I ) ∈ {II, . . . , IX} for some choice of
coefficients a, b, c and possibly d. Henceforth, we will agree that d = 0 if
ST(v, I ) contains only three vertices. Inspection of Figs. 3 and 4 shows that
if ST(v, I ) ∈ {II, . . . , IX}, then b ≤ a + c + d; and strict inequality occurs
in all cases except when b = 2 and a = c = 1 and ST(v, I ) ∈ {II, IX}.
On the other hand, if ST(v, I ) �∈ {VI, VIII}, then Lemma 15 implies that
H(I − {v}) ≥ H(I ) with strict inequality in all but the case of II with b = 2
and a = c = 1. Since I is a maximizer, it follows that either ST(v, I ) ∈
{VI, VIII} or ST(v, I ) = II, b = 2, a = c = 1 and H(I − {v}) = H(I ).

If ST(v, I ) = VI, then Ψ = VI = B(1)

3 . In this case a = b = 2 and
c = d = 1 and 2b < 2a+c+d. Lemma 15 implies that I is not a maximizer.

If ST(v, I ) = VIII, then Ψ = VIII = G(1)
2 . In this case a = 3, b = 2,

c = 1, d = 0 and 3b < 3a + c. Lemma 15 implies that I is not a maximizer.
If ST(v, I ) = II and b = 2, a = c = 1, then by inspection, Ψ is one of

B(1)
n , D(1)

n or A(2)

2n−1 and we can assume that the vertices enjoy the numbering
(r, v, s) = (1, 2, n + 1). Then r, s are orthogonal to I c so by Lemma 16 I c,
hence I , is not a maximizer.



534 L.T. Butler

Therefore, if I is a maximizer then Γ(I ) contains no subgraphs with two
or more edges.

Assume now that I is a maximizer with a vertex v such that ST(v, I ) con-
tains only two distinct vertices. It follows that ST(v, I ) ∈ {I.i, . . . , I.v, A(1)

1 ,

A(2)

2 }. In the latter two cases ar + bv = 0 so I cannot be a maximizer.
Assume that ST(v, I ) ∈ {I.ii, I.iii}; the above observations imply that
ST(r, I ) ∈ {I.iv, I.v}. Since H(I ) ≥ H(I − {v}), Lemma 15 implies that
b ≥ ka where k = 2 or 3. On the other hand, since H(I ) ≥ H(I − {r}),
Lemma 15 implies that a ≥ b. Thus a = 0. Absurd. By symmetry, we
conclude that ST(v, I ) �∈ {I.ii, . . . , I.v}. Thus, the only possibility is that
ST(v, I ) = I.i, b = a and |v| = |r|.

Recall that a graph has a natural topological structure of a simplicial
complex:

Lemma 19. Let v ∈ Ψ . There is a maximizer J such that Γ(J) is totally
disconnected and v ∈ J.

Proof. Let I =: J0 be a maximizer; since I c is also a maximizer we can
assume that v ∈ J0. Let J0 = A0 ∪ B0 where r ∈ A0 (resp. r ∈ B0) iff
ST(r, J0) = I (resp. ST(r, J0) = I.i). For each r ∈ B0 there is a unique
s = sr ∈ B0, s �= r, such that ST(r, J0) = ST(s, J0). If B0 = ∅, then we let
J = J0; otherwise, let r ∈ B0 be such that r �= v and let J1 := J0 − {r}. By
Lemmas 15 and 18 J1 is also a maximizer and v ∈ J1. If J1 is decomposed
into the sets A1, B1 as above, then B1 obviously has 2 fewer elements
than B0. Thus, this process inductively yields a maximizer J such that Γ(J)
is totally disconnected and v ∈ J .

Recall the notion of duality between root bases: let ř = r/|r|2 for each
r ∈ Ψ . The set Ψ̌ = {ř : r ∈ Ψ } is a root basis, too; it is the dual of Ψ [16].
Note that ˇ̌r = r for all r. The labels on Γ(Ψ̌ ) satisfy ωř = η|r|2ωr for each
r ∈ Ψ , where η−1 = gcd(|r|2ωr)r∈Ψ . We will also let ω̌r = |r|2ωr so that
ωř = ηω̌r and ω̌r ř = ωrr for all r. It follows that Ȟ( Ǐ) = |∑r∈I ωř ř|2 =
η2H(I ), ȟ∗ = ω

ω̌
ηh∗ and Πr∈I |ωř ř| = η|I | Πr∈I |ωrr|. Note that the Dynkin

diagram of Ψ̌ is obtained from Γ(Ψ ) by reversing all arrows and relabeling
the vertex r with ωř . This implies that the Cartan matrix of Ψ̌ is the transpose
of that of Ψ .

Finally, note that if Ψ = B(1)
n , C(1)

n , F(1)
4 , G(1)

2 then Ψ̌ = A(2)
2n−1, D(2)

n+1,

E(2)
6 , D(3)

4 ; all other root systems are self-dual.

Proof of Theorem 3. We will show the proof for B(1)
n only. The remaining

cases are similar and/or handled by the foregoing lemmata.
By Lemma 19, we can assume that I is a maximizer containing r1 such

that Γ(I ) is totally disconnected. Then rn+1 ∈ I and r2 �∈ I . There are
two mutually exclusive possibilities: (i) either rn−1 ∈ I ; or (ii) rn ∈ I .
In case (i) we conclude that rn, rn−2 �∈ I so the Dynkin diagram of I ′ =
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A
 (1)

1

1 1

1 2

1 1

1 2
 (1)

A n (n > 1)

1

n−1

1

1

n

n+1

2

n
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n−12

21

1

 (1)

nD (n > 4)

n+1

1

n−1

n

n−2

2

1

1

2

1

1

1

 (1)

2G 1 32

3                                 2                                    1

2

n−1

1

n
 (1)

nC (n > 2)
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4F

4

3 4

22

1

3

2

 (1)

6E

2

5

1

6

1

1

2

3

3

4

2

2

1

7

 (1)

7E

3

5

3

3

4

4

2

2

1

8

2

1

1

7

2

6

 (1)

8E

5

5

4

3

6

4

2

3

2

1

3

7

4

6

1

9

2

8

 (1)

nB

n+1

1

(n > 3)

1n+1

2 1

1

5

Fig. 3. Dynkin diagrams of rank n, type g(1)
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A
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2

2 1

1 2

 (2)

2nA (n > 1) 2  1

2  2 2

 n

1

n+1

2

21

1
 (2)

A

n+1

1

(n > 2)

2

n−1

1

n
2n−1
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n+1D (n > 1) 2  1

1 1 1

 n

1

n+1

 (2)

6E

2

1

3

2

2

3 4

1

 (3)

4D 2 31

1                                 2                                    1

1

5

Fig. 4. Dynkin diagrams of rank n, types g(2) and g(3)

I − {r1, rn+1, rn−1} is
2• · · · 2•. Since I is totally disconnected, H(I ) =

H(I ′)+ H({r1, rn+1, rn−1}); since I is a maximizer, I ′ is a maximizer in the
subgraph with vertices r3, . . . , rn−3. If n = 2m + 1 (resp. n = 2m) then
I ′ = {r3, . . . , r2m−3}. (resp. I ′ = {r3, . . . , r2m−3}) is a maximizer. Then
H(I ) = 8(m − 1) + 4 = 4(2m − 1). In case (ii), we conclude that for n =
2m + 1 (resp. n = 2m) I ′ = {r3, . . . , r2m−1} (resp. I ′ = {r3, . . . , r2m−3})
and H(I ) = 8m (resp. H(I ) = 8(m − 1)). Comparison of H(I ) for the
candidate maximizers shows that H∗ = 4(n −1) for all n ≥ 3. Since ω = 2,
this shows

h∗ = 1

ω

√
H∗ = √

n − 1.

4. Uniqueness of flows up to topological conjugacy

Recall that flows φ : M → M and ϕ : N → N are topologically conjugate
if there is a homeomorphism h : M → N such that hφt = ϕth for all t. Let
Pφ be the set of periodic orbits of the flow φ. For each periodic orbit γ of φ,
let the homology class of γ be denoted by γ̄ and its period by Period(γ).
The following two definitions originate in Schwartzman’s work [35].

Definition 2. Let Mφ = {(γ̄ , Period(γ)) : γ ∈ Pφ}. We call Mφ the homol-
ogy spectrum of φ.
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The homology spectrum is a subset of H1(M;Z)×R that is an invariant
of topological conjugacy in the following sense: if φ and ϕ are topologically
conjugate then

(h∗ × idR)(Mφ) = Mϕ,

where h∗ : H1(M;Z) → H1(N;Z) is the obvious isomorphism.

Let π : M̂ → M be the universal abelian covering of M. The flow φ

is covered by a flow φ̂ : M̂ → M̂. Let F ⊂ M̂ be a fundamental domain
for Deck(π). For each p ∈ M choose p̂ ∈ F ∩ π−1(p). For each t there is
a g ∈ Deck(π) such that φ̂t(p) ∈ g.F; let gt(p) be one such element and let
1
t gt(p) ∈ Deck(π) ⊗Z R. Recall that Deck(π) ⊗Z R � H1(M;R). Let

Definition 3.

ηφ(p) := ∩T≥0

{
1

t
gt(p) : t ≥ T

}

be the asymptotic homology of p ∈ M. Let η±
φ = ηφ± where φ±

t = φ±t .

One can show that ηφ(p) is independent of the choice of representatives
and if M is compact then ηφ(p) is non-empty for all p. It is also clear that
if ϕ is conjugate to φ then h∗η±

φ (p) = η±
ϕ (h(p)).

Example 1. Let Q : V ∗
o → Vo be a linear isomorphism and M =Vo/L× V ∗

o .
Let ϕt(x,X) = (x + tQX mod L,X). Clearly, η±(x,X) = {±QX} for
all (x,X) ∈ M.

Let Vo = {(x,X) ∈ M : 〈QX,X〉 = 1}, Φo = ϕ|Vo and |m|Q =√|〈Q−1m, m〉| for all m ∈ Vo. The homology spectrum of Φo is seen to be
MΦo = {(m, |m|Q) : m ∈ L − {0}}.
Example 2. Let Q be as above, and let ft(x, y,X) = ∆(x + tQX, y,X)
be a flow on V⊥ ⊂ T ∗Σ. Let Φt = ft|V. Let P denote the projection map
V → Vo. We have that PΦt = Φo

t P. Thus (P∗ × id)MΦ = MΦo . Since
V � Σ × Sn−1, H1(V;Z) = H1(Σ;Z) ⊕ H1(Sn−1;Z). By the structure
of the flow ft it is clear that the projection of a periodic orbit’s homology
class to H1(Sn−1;Z) is trivial. Thus (P∗ × id) is a bijection between MΦ

and MΦo .

Lemma 20. Let H be a hamiltonian defined by Equation (15), and let
ϕ : T ∗Σ → T ∗Σ denote its hamiltonian flow. Let Uσ = {γσ �= 0} for each
σ ∈ G. If P ∈ Uσ then 〈

η±
ϕ (P), σ̂

〉 ≤ 0.

Proof. Let P̂ = (x, y + N,X,Y) ∈ Ûσ and let P = Π(P̂). Since γσ �= 0,
Yσ �= 0. If v ∈ η±

ϕ (P), then there is a sequence Tk → ±∞ such that

v = lim
k→∞

1

|Tk|(x(Tk) − x(0)),
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where ϕ̂t(x, y + N,X,Y) = (x(t), y(t) + N,X(t),Y(t)) and ϕ̂t is the lift
of ϕt . Thus:

〈v, σ̂〉 = lim
k→∞

1

|Tk| 〈x(Tk), σ̂〉.

On the other hand Ĥ and Yσ are first integrals of ϕ̂t . Inspection of Equa-
tion (15) shows that Ĥ(P̂) ≥ Y2bσ

σ exp(2bσ 〈x(T ), σ̂〉) for all T . Since
bσ > 0 and Yσ �= 0, this inequality implies that

1

|Tk| 〈x(Tk), σ̂〉 ≤ 1

|Tk|
(

1

2bσ

ln Ĥ − ln Y2
σ

)
k→∞−→ 0.

Since v ∈ η±
ϕ (P) was arbitrary, this proves the lemma.

Lemma 21. Let H1, H2 be defined by Equation (15) corresponding to root
bases Ψ1, Ψ2 . If h : T ∗Σ → T ∗Σ conjugates the hamiltonian flows of H1
and H2, then

h(V⊥) = V⊥.

Proof. Let U be the set of points in V⊥ that are mapped out of V⊥ under
h: U = h−1(∪σ∈G Uσ ) ∩ V⊥. It suffices to prove that U is empty, since
a symmetric argument applies to h−1. Clearly, it suffices to prove that
Uσ = h−1(Uσ ) ∩ V⊥ is empty for all σ . Since Uσ is open, Uσ is an open
subset of V⊥, so to prove that it is empty, it suffices to show that Uσ is
nowhere dense. Remark that V⊥ is naturally diffeomorphic to Σ × V ∗

o . Let
πo : V⊥ → V ∗

o denote the projection onto the second factor. Clearly, πo is
an open map and πo(P) = X where P = Π(x, y,X, 0) ∈ V⊥. It suffices to
show that πo(Uσ) lies in a hyperplane to prove the lemma.

Let ϕi be the hamiltonian flow of Hi , and Qi the quadratic form used to
define Hi (Equation (15)). If P ∈ Uσ , then P ∈ V⊥ so

η±
ϕ1(P) = {±Q1 X},

while h(P) ∈ Uσ so from the previous lemma
〈
η±

φ2(h(P)), σ̂
〉 ≤ 0.

If hϕ1
t = ϕ2

t h, then
h∗η±

ϕ1(P) = η±
ϕ2 ◦ h(P),

which implies that
±〈h∗Q1X, σ̂〉 ≤ 0.

Since h∗Q1 is non-degenerate, X = πo(P) must lie in a fixed hyperplane.
Thus, πo(Uσ ) lies in a hyperplane. Since πo is an open map, Uσ is empty.

Recall that h : T ∗Σ → T ∗Σ is energy-preserving if h({H1 = 1
2 }) =

{H2 = 1
2 }. We use the notation of Lemma 21 and its proof:
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Theorem 6. Let H1, H2 be defined by Equation (15) corresponding to root
bases Ψ1, Ψ2. If h ∈ Homeo(T ∗Σ) is an energy-preserving conjugacy of ϕ1

with ϕ2, then the norms | · |Q1 and | · |Q2 are equivalent over Aut(L).

Proof. Let Vi = V⊥ ∩ H−1
i ( 1

2 ). Since h is energy preserving, Lemma 20
implies that h(V1) = V2. Let ϕi|Vi be denoted by Φi and let h|V1 continue
to be denoted by h. From Examples 1 and 2

MΦi = {(m, |m|Qi ) : m ∈ L − {0}}
for i = 1, 2. By hypothesis hΦ1 equals Φ2h, so (h∗ × id)(MΦ1) = MΦ2 .
This means that h∗ induces an automorphism f of L such that | fm|Q2 =
|m|Q1 for all m ∈ L.

Let us dualize Theorem 6. Let φi ∈ Bi , where Bi is the set of linear
isomorphisms V ∗

o → h∗i induced by bijections Ĝ → Ωi = {wrr : r ∈ Ψi}.
The norms | ·|Qi on L are equivalent modulo Aut(L) iff the dual norms | ·|∗Qi

on L∗ are equivalent modulo Aut(L∗). Since |X|∗Qi
= √〈〈φi(X), φi(X)〉〉i ,

Theorem 6 implies

Corollary 4. If ϕ1 and ϕ2 are topologically conjugate by an energy-
preserving homeomorphism, then there exists µ ∈ Isom(h∗2; h∗1) and g ∈
Aut(L∗) such that

µ = φ1gφ−1
2 . (25)

Let C be the union of the sets B for all root bases. Equation (25)
defines an equivalence relation ∼ on C that is coarser than that defined by
energy-preserving topological conjugacy. In the next section, we show that
knowledge of the equivalence relation ∼ is highly non-trivial.

4.1. Conjugacies, Q-structures and Gelfond’s conjecture

Let L be a subfield of C and let W be a finite-dimensional vector space
over L . A subset U of W is a rational structure on W if U is a Q-vector
space such that dim QU = dim L W . If L is a subring ofC, let VL = spanL G,
Vo,L = ker ε ∩ VL and h∗L = spanL Ψ . It follows that VQ (resp. Vo,Q, h∗

Q
)

is a Q-structure on V (resp. Vo, h∗), and also the complex form of these
vector spaces. Because Ĝ (resp. Ω) is a spanning set of Vo,Q (resp. h∗

Q
), the

following is obvious:

Lemma 22. If φ ∈ B, then φ(V ∗
o,Q) = h∗

Q
.

V ∗
o has a second, non-standard Q-structure induced by L: span

Q
L∗. If

φi ∈ Bi and there is a solution to the congruence equation (Equation (25)),
then, on the one hand g must be an automorphism of this non-standard
Q-structure, while on the other hand g is rationally equivalent to an element
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in aQ-algebraic group. This tension should force g to have a rather restricted
form.

Let E/Q be the splitting field of F. Let UE be the group of units of the
ring of integers of E, let v1, . . . , vm,−1 be a basis of UE and let ξi = ln |vi |
for i = 1, . . . , m.

Let f ∈ Aut(L). Then f can be decomposed as f = BCB−1 where
B : Vo → Vo is a linear automorphism that maps Vo,Z onto L and C ∈
Aut(Vo,Z). Then for all τ �= 1, there is a uτ ∈ U+ such that B(τ − 1) =∑

σ∈G,σ �=1 ln |σ(uτ)| (σ −1). Since |σ(uτ)| ∈ UE , it follows that the entries
Bij of B relative to a Q-basis of Vo are rational linear combinations of
ξ1, . . . , ξm . Let Bij(x) = ∑m

a=1 ba
ij xa be rational linear functions such that

Bij(ξ) = Bij where ξ = (ξ1, . . . , ξm). Define a map Cm → Hom(Vo,C) by

f(x) = 1

s(x)
B(x) C adj B(x) (26)

where adj is the classical adjoint matrix and s(x) = det B(x). Clearly
f(ξ) = f and B(x) (resp. s(x)) is a homogeneous polynomial in x of degree
1 (resp. n) with rational coefficients. Dualizing this observation gives

Lemma 23. Let g ∈ Aut(L∗). Then there is a c ∈ Aut(V ∗
o,Z) and a linear

map x �→ b(x) : Cm → Hom(V ∗
o,C), with rational coefficients, such that

g(x) = 1

s(x)
adj b(x) c b(x) (27)

where s(x) = det b(x) satisfies g(ξ) = g.

Note that if one fixes a basis of Vo and its dual basis of V ∗
o , then the

matrix g(x) is the inverse transpose of f(x) and b(x) is the transpose of
B(x).

Let φi ∈ Bi and assume that µ ∈ Isom(h∗2; h∗1), g ∈ Aut(L∗) solves
Equation (25). Define a polynomial map Cm → Hom(h∗

C
), x �→ T(x) by

T(x) := φ1 adj b(x) c b(x) φ−1
2 . From Lemmas 23 and 22, both s(x) and T(x)

are homogeneous polynomials of degree n in x with rational coefficients.
Therefore, there are polynomials Tij (x), s(x) ∈ Q[x], all homogeneous and
of degree n, such that

µij = Tij (ξ)

s(ξ)
,

where [µij ] are the entries of µ relative to Q-bases of h∗1 and h∗2. Let
Rk,ij ∈ Q denote the entries of 〈〈, 〉〉k relative to these Q-bases. Since
µ ∈ Isom(h∗2; h∗1), the equation for µij implies that for all i, j the polynomial

Qij (x) :=
n∑

a,b=1

Tia(x) Tjb(x) R2,ab − s(x)2 R1,ij (28)

has a zero at x = ξ . In addition, Qij(x) ∈ Q[x] for all i, j.
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Theorem 7. If m ≥ 3, assume the Gelfond conjecture. If Equation (25) is
satisfied, then x �→ g(x) is a constant map. Thus, g ∈ Aut(L∗)∩ Aut(V ∗

o,Q)
and µ ∈ Isom(h∗2,Q; h∗1,Q).

Remark 1. One requires only that the rational independence of logarithms of
algebraic numbers imply their homogeneous independence for the following
proof. Gelfond himself showed this to be true for pairs of algebraic numbers
with rationally independent logarithms. Thus Theorem 7 is true independent
of the Gelfond conjecture when F/Q is a normal, cubic extension.

Proof. By hypothesis, ξ1, . . . , ξm are rationally independent logarithms of
algebraic numbers. The Gelfond conjecture therefore implies that Qij (x)≡0
(Equation (28)) for all i, j. In terms of matrices, this means that for all x,
tT(x) R2 T(x) ≡ s(x)2 R1 where t Tij = Tji. From the non-degeneracy of
Rk , it follows that s(x) = 0 iff T(x) = 0. Therefore, for all i and j, Tij(x)
and s(x) are homogeneous polynomials of degree n in x that vanish on the
same set of x ∈ Cm . A standard algebro-geometric argument shows that s(x)
divides Tij (x), and since they have the same degree, Tij(x)/s(x) is a rational
number. Let µ(x) = 1

s(x)
T(x); evaluation of µ(x) at x ∈ Qm gives a matrix

with rational entries, but since µ(x) is independent of x, µ = µ(ξ) must
have rational entries. This proves that µ is an isometry between Q-vector
spaces. On the other hand, since g(x) = φ−1

1 µ(x) φ2, it is also a constant,
which must be g. Lemma 22 and the fact that µ is an isomorphism of
Q-vector spaces shows that g is, too.

Example 3. Theorem 7 can already be applied. Let F be a degree 3 totally
real extension ofQ that is not normal. For example, if we take a root α of the
polynomial x3 − 4x + 2 which has discriminant d = 148, then F = Q(α)

is totally real since d > 0 and non-normal since
√

d �∈ Q [29]. The splitting
field of F is of degree 6 and the conjugate subfields of F intersect pairwise
in Q. Let G = {σ1, σ2, σ3} be the embeddings of F into R, let u, v,−1
generate UF and let αi = ln |σi(u)|, βi = ln |σi(v)|. The non-normality of
F implies that {α1, α2, β1, β2} is Q-linearly independent.

Let B(σ1 − σ3) = α1σ1 + α2σ2 + α3σ3 and B(σ2 − σ3) = β1σ1 +
β2σ2 + β3σ3, so B : Vo,Z → L is an isomorphism. Relative to the Q-basis
{σ1 − σ3, σ2 − σ3} of Vo:

B =
[

α1 β1
α2 β2

]

, (29)

since the αi’s and βi’s separately sum to zero. By the Gelfond conjecture,
the rational independence of the entries of B implies that the map x →
B(x) (Equation (26)) surjects onto Hom(Vo,C). Thus, the only constant map
x → g(x) (Equation (27)) is the identity and its multiples; since g is also
a lattice automorphism, g = ±1. Therefore, up to an inessential factor of
±1, µ = φ1φ

−1
2 is a linear isometry from h∗2 to h∗1 that maps Ω2 to Ω1. To
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proceed, it is necessary to investigate such maps. To do this, it will be useful
to define the notion of an automorphism of a Dynkin diagram.

A permutation ρ ∈ S(Ψ ) is an automorphism of the Dynkin diagram
Γ(Ψ ) iff the permutation leaves the Dynkin diagram unchanged with the
exception of the numbering of the roots. Aut(Γ(Ψ )) is the automorphism
group of Γ(Ψ ). Note that ρ ∈ Aut(Γ(Ψ )) iff ωr = ωρ(r) and 〈〈r, s〉〉 =
〈〈ρ(r), ρ(s)〉〉 for all r, s ∈ Ψ .

Lemma 24. Let µ ∈ Isom(h∗2; h∗1) be an isometry that maps Ω2 to Ω1. If
Ψ1, Ψ2 �= A(2)

2n , then Ψ1 = Ψ2 = Ψ , and µ induces an automorphism of the
Dynkin diagram Γ(Ψ ).

Proof. For each r ∈ Ψ2 there is a unique v ∈ Ψ1 such that µ(wrr) = wvv.
Define ρ to be the map that sends r to v. Since µ is an isometry, it follows
that for all r, s ∈ Ψ2

〈〈r, s〉〉2 = ωρ(r)ωρ(s)

ωrωs
〈〈ρ(r), ρ(s)〉〉1. (30)

For r = s, Equation (30) implies that |r|22/|ρ(r)|21 = ω2
ρ(r)/ω

2
r . If |r|2/|ρ(r)|1

is irrational, then ωr/ωρ(r) is irrational, which is absurd. If neither Ψ1 nor
Ψ2 is A(2)

2n , then the ratios of root lengths |r|2/|ρ(r)|1 is one of 1,
√

2 or
√

3
or their reciprocals. Thus, in all cases but where one of Ψi equals A(2)

2n , ρ(r)
is the same length as r. Thus, ρ : Ψ2 → Ψ1 is an isometry and

ωr = ωρ(r) (31)

for all r. Hence Ψ2 = Ψ1 are the same root bases and ρ induces an automor-
phism of the Dynkin diagram Γ(Ψ ).

Returning to the example, Lemma 24 implies that Equation (25) has
a solution iff

φ1 ∈ Aut(Γ(Ψ ))φ2.

If Ψ = A(1)
2 , then Aut(Γ(Ψ )) = S3, so this shows that there is only one

equivalence class of bijections; for Ψ = C(1)
2 the automorphism group of

Γ(Ψ ) is 〈 (2 3) 〉 so B is partitioned into 3 equivalence classes with 2
elements each; for Ψ = G(1)

2 the automorphism group is trivial, so B is
partitioned into 6 equivalence classes. Thus

Theorem 8. Assume the Gelfond conjecture. Let F/Q be a non-normal,
totally real, cubic extension. Then there are at least 10 = 1 + 3 + 6
hamiltonian flows constructed in Sect. 2 that are not topologically conjugate
by an energy-preserving conjugacy.
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4.2. Normal extensions of Q

Recall that F/Q is a normal field extension if the set of embeddings of F is
the Galois group of field automorphisms of F. Henceforth, we will assume
that G = Gal(F/Q). The vector space V = RG is therefore also the group
ring of G, and Vo is a 2-sided ideal in RG. U+ – hence L – is a natural
ZG-module, so let A be the subring of QG which is integral with respect
to this representation. Let So = A/Qt̄ where t̄ =∑σ∈G σ .

Theorem 9. Let f ∈ Aut(Vo,Q) ∩ Aut(L). Then there is an r ∈ A, with
r +Qt̄ a unit of So, such that

f = Rr |Vo,

where Rr : V → V is the right-translation map y �→ yr.

Proof. Let t = 1
n+1 t̄, s = 1 − t and write VQ = sVQ ⊕ tVQ = Vo,Q ⊕Qt as

a direct sum ofQG modules. It is convenient to extend f to an automorphism
of VQ by letting f fix t. This extension will also be denoted by f . For each
σ ∈ G, f(σ) =∑τ∈G fσ,τ τ; the coefficients fσ,τ are rational.

From the definition of L and the hypothesis that f ∈ Aut(L), there is
the following commutative diagram

L
f−→ L

� ↑ ↑ �

U+ α−→ U+ ,

where α is an automorphism of U+. Thus, if u = �(u), then

f(u) =
∑

τ∈G




∑

σ∈G

fσ,τ ln |σ(u)|


 τ, and

=
∑

τ∈G

ln |τ(α(u))|τ.

Until now, it has been assumed that U+ is an index 2, torsion-free subgroup
of U. Let us be precise and let U+ be the set of all positive units. In addition,
let U> be the subgroup of units all of whose conjugates are positive; this
is a finite index subgroup of U+ since it contains the subgroup of squared
units. The above equation for f(u) implies that for all u ∈ U> and τ ∈ G

τ(α(u)) = Πσ∈G σ(u) fσ,τ . (32)

Since τ is an automorphism, Equation (32) implies that

α(u) = Πσ∈G σ(u) fτσ,τ .
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Since U> is a finite-index subgroup of U+, this implies that f |Vo is de-
termined by the coefficients fτ,1 : τ ∈ G. Thus, without altering f |Vo, the
extension of f can be altered so that fσ,τ = f1,σ−1τ for all σ, τ ∈ G.

Let xτ = f1,τ and let x =∑τ∈G xτ τ . Then

Rx(σ) =
∑

τ∈G

xσ−1τ τ, (33)

which is equal to f(σ) by the hypothesis on the coefficients fσ,τ . Note that
if we let r = xs + t, then Rr |Vo = f |Vo and Rr(t) = t. Thus, Rr equals the
extension of f that fixes t. Since α = �−1◦Rr ◦�, and � is aZG-isomorphism
between L and U+, it is clear that r ∈ A and r + Qt̄ is a unit of So. The
theorem is proved.

How large is A? If y ∈ A, then Ry is an endomorphism of L, so
x = ys + t defines an endomorphism of the lattice subgroup L ⊕ Zt
of V . Hence, Trace(Rx) is a rational integer. Write x = 1

n+1

∑
σ∈G xσ σ .

Equation (33) shows that Trace(Rx) = x1. Thus x1 ∈ Z. Similar reasoning
shows that xσ ∈ Z for all σ . Since x ≡ y mod Qt, this shows that

ZG +Qt ⊆ A ⊆ (n + 1)−1
ZG +Qt.

This means that it is practical to compute the ∼ equivalence classes, at least
for small n. However, Theorem 9 is probably too weak: my belief is that
Equation (25) has a solution, regardless of the normality of F, iff g = R′

σ |Vo
for some automorphism σ of the field F.

Proof of Theorem 5. Assuming the hypotheses of the theorem, Corollary 4
implies that there is a g ∈ Aut(L∗) and a µ ∈ O(h∗) such that µ = φ1gφ−1

2 .
By Theorem 7, the map g ∈ Aut(V ∗

o,Q) ∩ Aut(L∗). Let f = g′; Theorem 9
now implies Theorem 5.

4.3. Applications of Theorem 5

Let us establish a convention that will be helpful to do the computations
of the following examples. By enumerating the elements of G (and Ψ , Ω),
G (and Ψ , Ω) will be identified with the set {1, . . . , n+1}. The enumeration
of Ψ and Ω will be the enumeration from its Dynkin diagram, while G will
usually suggest a convenient enumeration. Permutations of, and bijections
between, these sets are then naturally identified with permutations of n + 1
symbols. The group of permutations of the set • is denoted by S(•).
Example 4. Let’s apply Theorem 5 to a totally real, normal, cubic extension.
For example, let F = Q(ζ + ζ−1) where ζ is a primitive 7-th root of unity.
In this case G = {1, σ, σ2} is a cyclic group of order 3.

Units of So [c.f. [18,37]]. The ring So = A/Qt̄ is isomorphic toZ[ω], where
ω is a primitive 3-rd root of unity. The unit group of Z[ω] is {±1,±ω,±ω2},
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so the unit group of So, U(So), is ±G+Qt̄. Let U(So)
+ = G+Qt̄; U(So)

+
is naturally isomorphic to G.

Solutions to Equation (25). Let φ1, φ2 ∈ B and assume that µ = φ1gφ−1
2

solves Equation (25) with g = R̄′
r for some r ∈ U(So). Then Equation (25)

also has the solution −µ, −g = R̄′−r and −r ∈ U(So). This shows that it
can be assumed that r ∈ U(So)

+.
Since U(So)

+ acts naturally on Ĝ by permutations, µ = φ1 R̄r φ−1
2 is

a permutation of Ω and an element in O(h∗). Thus, µ naturally induces an
automorphism of the Dynkin diagram Γ(Ψ ) by Lemma 24.

To conclude the calculations, identify G, Ψ and Ω, etc. with {1, 2, 3}.
The permutation group S3 on 3 symbols is generated by the transposition
a = (1 2) and the 3 cycle b = (1 2 3) and C3 = 〈b〉 is a normal subgroup
of S3. The permutation representation of U(G)+ on Ĝ induces the map
σ + Qt̄ → (1 2 3). Since C3 is normal in S3, Equation (25) has a solution
iff

φ1φ
−1
2 C3 ∩ Aut(Γ(Ψ )) �= ∅.

If Ψ = A(1)

2 , then Aut(Γ(Ψ )) ≡ S3, so B has only one equivalence
class of bijections. If Ψ = C(1)

2 , then Aut(Γ(Ψ )) ≡ 〈(2 3)〉. Since C3 ∪
(2 3)C3 = S3, the equivalence relation is again trivial. If Ψ = G(1)

2 , then
Aut(Γ(Ψ )) = 1. It follows that there are 2 equivalence classes associated
with the cosets 1.C3 and (1 2)C3.

The contrast with Example 3, where there were 1, 3 and 6 equivalence
classes, is striking. To conclude

Theorem 10. Let F/Q be a normal, cubic extension. Then there are exactly
1 + 1 + 2 = 4 flows defined by Theorem 1 that are not topologically
conjugate by an energy-preserving homeomorphism.

This is a corollary of

Theorem 11. Assume that Ψi �= A(2)

2n . If U(So) = ±G + Qt and φi ∈ Bi ,
then φ1 ∼ φ2 iff Ψ1 = Ψ2 and ϕ

φ1
t is conjugate to ϕ

φ2
t by an energy-

preserving homeomorphism.

Proof. It suffices to prove that if φ1 ∼ φ2, then there is a symplectic
diffeomorphism h : T ∗Σ → T ∗Σ such that Hφ1 ◦ h = Hφ2 .

If φ1 ∼ φ2 and U(So) = ±G + Qt, then there is a τ ∈ G such that
µ = φ1 ◦ R̄′

τ ◦ φ−1
2 solves Equation (25). Since R̄′

τ acts as a permutation
of Ĝ, µ is an isometry of Ω2 with Ω1. By Lemma 24, Ψ1 and Ψ2 equal
a common root basis Ψ and µ acts as a permutation of Ω induced by an
automorphism of Γ(Ψ ).

Define:

ĥ(x, y,X,Y) = (R̄τ−1 x, Rτ−1 y, R̄′
τX, R′

τY
)
,
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for all (x, y,X,Y) ∈ T ∗Σ̂. Since G acts naturally on the right on V = RG,
the map ĥ induces an analytic symplectic diffeomorphism of T ∗Σ.

Calculations show that 〈〈φ1(R̄′
τX), φ1(R̄′

τX)〉〉 = 〈〈φ2(X), φ2(X)〉〉,
〈R̄τ−1 x, σ̂〉 = 〈x, σ̂τ〉 and (R′

τY)σ = Yστ . Thus:

Hφ1 ◦ ĥ = 1

2
〈〈φ2(X), φ2(X)〉〉 +

∑

σ∈G

exp(2b1,στ−1〈x, σ̂ 〉)Y2b1,στ−1
σ ,

where bi,σ is the integer bσ defined for Hφi . To finish the proof, it suffices
to show that b2,σ = b1,στ−1 for all σ ∈ G.

Let ρ be the automorphism of the Dynkin diagram that is induced by µ,
and let ri,σ be the unique root r that satisfies φi(σ̂) = wrr. Then bi,σ =
ω/ωri,σ for all σ and i. Since R̄′

τ σ̂ = σ̂τ−1, one calculates that µ(wr2,σ
r2,σ ) =

wr1,στ−1 r1,στ−1. Thus ρ(r2,σ) = r1,στ−1, so b2,σ = b1,στ−1.

Example 5. Let’s apply Theorem 5 to a totally real, normal, quartic exten-
sion. In this case, the Galois group of F/Q is either Z2 ⊕ Z2 or Z4. Let us
examine the Klein 4-group first; F = Q(

√
2,

√
3) is an example of such

a totally real, normal, quartic number field with Gal(F/Q) = Z2 ⊕ Z2.

Units of So. Arguments similar to those of Example 4 show that U(So) is
trivial.

Solutions to Equation (25). Let φ1, φ2 ∈ B. As above, if µ and g = R̄r
solve Equation (25), then it may be assumed that r ∈ U(So)

+. On identify-
ing G, etc. with {1, 2, 3, 4}, the permutation representation of U(So)

+ →
S(Ĝ) is naturally identified with the subgroup V4 = 〈(1 2)(3 4), (1 3)(2 4)〉.
This subgroup is normal in S4. Repeating the arguments of the previous
example shows that Equation (25) is solvable iff

φ1φ
−1
2 V4 ∩ Aut(Γ(Ψ )) �= ∅.

If Ψ = A(1)
3 , then Aut(Γ(Ψ )) ≡ D4 where D4 is the dihedral group

of order 8 generated by (1 2 3 4) and V4. Therefore, Equation (25) has
a solution iff φ1 ∈ D4φ2. Since [S4 : D4] = 3, it follows that there are
3 equivalence classes in B. The representative cosets are D4, D4(1 2) and
D4(1 3).

If Ψ = B(1)
3 , then Aut(Γ(Ψ )) ≡ 〈(1 4)〉 =: C2. Since C2 ∩ V4, C2 ∩

V4(1 4) �= ∅, and the remaining 4 cosets of V4 intersect C2 trivially, Equa-
tion (25) has a solution iff φ1 ∈ (V4 ∪ V4(1 4))φ2. Thus B is partitioned
into 3 equivalence classes.

If Ψ = C(1)
3 , then Aut(Γ(Ψ )) ≡ 〈(1 2)(3 4)〉 =: C2. Since C2 < V4, the

remaining 5 cosets of V4 intersect C2 trivially, Equation (25) has a solution
iff φ1 ∈ V4φ2, so there are 6 equivalence classes.

Note that the normality of U(So)
+ in the permutation group S(Ĝ) meant

that each equivalence class of bijections has the same number of elements.
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The next example shows that this fails in the case that U(So)
+ is a non-

normal subgroup of S(Ĝ).

Example 6. Let F/Q be a totally real, normal, quartic extension with
Gal(F/Q) = Z4. An example of such a number field is given by F =
Q(ζ + ζ4 + ζ−1 + ζ−4) where ζ is a primitive 17-th root of unity.

Units of So. U(So) is trivial.

Solutions to Equation (25). Let φ1, φ2 ∈ B and write α = φ1 and β =
φ2φ

−1
1 ∈ S(Ω). As above, if µ and g = R̄′

r solve Equation (25), then it
may be assumed that r ∈ U(So)

+. On identifying G, etc. with {1, 2, 3, 4},
the permutation representation of U(So)

+ → S(Ĝ) is naturally identified
with the subgroup C4 = 〈(1 2 3 4)〉. This subgroup is normalized in S4 by
D4 and has three conjugate subgroups: C4, (2 3)C4(2 3) and (3 4)C4(3 4).
Repetition of the arguments of the previous example along with the non-
normality of C4 ≡ U(So)

+ shows that Equation (25) is solvable iff

αC4α
−1 ∩ Aut(Γ(Ψ ))β �= ∅.

In case Ψ = A(1)
3 , then Equation (25) has a solution iff either (i)

α, β ∈ D4; or (ii) α ∈ D4(2 3) and β �∈ D4(2 3) or α ∈ D4(3 4) and
β �∈ D4(3 4). Thus, if φ1 ∈ D4, then the equivalence class [φ1] has 8
elements; if φ1 �∈ D4, then [φ1] has 16 elements. Therefore, there are two
equivalence classes: [1] = D4 and [(2 3)] = S4 − D4.

If Ψ = B(1)
3 or Ψ = C(1)

3 , then there are 3 equivalence classes, D4,
D4(2 3) and D4(3 4) each with 8 elements.
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17. Hénon, M.: Integrals of the Toda lattice. Phys. Rev. B (3) 9, 1921–1923 (1974)
18. Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. (2) 46, 231–248 (1940)
19. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Grad. Texts

Math. 9. New York, Berlin: Springer 1978
20. Jurdjevic, V.: Geometric control theory. Camb. Stud. Adv. Math. 52. Cambridge: Cam-

bridge University Press 1997
21. Kac, V.: Infinite-dimensional Lie algebras. Third edition. Cambridge: Cambridge Uni-

versity Press 1990
22. Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv.

Math. 34, 195–338 (1979)
23. Kozlov, V.V.: Topological obstacles to the integrability of natural mechanical systems.

Dokl. Akad. Nauk SSSR 249, 1299–1302 (1979)
24. Kozlov, V.V.: Symmetries, topology and resonances in Hamiltonian mechanics. Ergeb.

Math. Grenzgeb. (3) 31. Berlin: Springer 1996
25. Lang, S.: Introduction to transcendental numbers. Reading, MA, London, Don Mills,

ON: Addison-Wesley Publishing Co. 1965
26. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun.

Pure Appl. Math. 21, 467–490 (1968)
27. Markus, L., Meyer, K.: Generic Hamiltonian dynamical systems are neither integrable

nor ergodic. Mem. Am. Math. Soc. 144, 1974
28. McQuillan, D.L.: Some results on algebraic independence. Arch. Math. (Basel) 45,

336–341 (1985)
29. Mollin, R.A.: Algebraic number theory. CRC Press Series on Discrete Mathematics

and its Applications. Boca Raton, FL: Chapman & Hall/CRC 1999
30. Moser, J.: Stable and random motions in dynamical systems. With special emphasis on

celestial mechanics. Reprint of the 1973 original. Princeton, NJ: Princeton University
Press 2001

31. Paternain, G.P.: On the topology of manifolds with completely integrable geodesic
flows. Ergodic Theory Dyn. Syst. 12, 109–121 (1992)

32. Paternain, G.P.: Multiplicity two actions and loop space homology. Ergodic Theory
Dyn. Syst. 13, 143–151 (1993)

33. Paternain, G.P.: On the topology of manifolds with completely integrable geodesic
flows. II. J. Geom. Phys. 13, 289–298 (1994)

34. Reyman, A.G., Semenov-Tian-Shansky, A.: Group-Theoretical Methods in the Theory
of Finite-Dimensional Integrable Systems. In: Dynamical systems. VII. Integrable
systems, nonholonomic dynamical systems. Encyclopaedia of Mathematical Sciences
16. Berlin: Springer 1994

35. Schwartzman, S.: Asymptotic cycles. Ann. Math. (2) 66, 270–284 (1957)
36. Segal, D.: Polycyclic groups. Camb. Tracts Math. 82. Cambridge: Cambridge Univer-

sity Press 1983
37. Sehgal, S.K.: Topics in group rings. Monographs and Textbooks in Pure and Applied

Math. 50. New York: Marcel Dekker, Inc. 1978
38. Symes, W.W.: Systems of Toda type, inverse spectral problems, and representation

theory. Invent. Math. 59, 13–51 (1980)



Toda lattices and positive-entropy integrable systems 549

39. Taı̆manov, I.A.: Topological obstructions to the integrability of geodesic flows on
nonsimply connected manifolds. Izv. Akad. Nauk SSSR, Ser. Mat. 51, 429–435, 448
(1987)

40. Taı̆manov, I.A.: Topology of Riemannian manifolds with integrable geodesic flows.
Trudy Mat. Inst. Steklov. 205 (Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem),
150–163 (1994)


