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Abstract. This note constructs completely integrable convex Hamiltonians
on the cotangent bundle of certain Tk bundles over Tl. A central role is played

by the Lax representation of a Bogoyavlenskij-Toda lattice. The classifica-
tion of these systems, up to iso-energetic topological conjugacy, is related to
the classification of abelian groups of Anosov toral automorphisms by their
topological entropy function.

1. Introduction

Say that a smooth flow ϕ : M × R → M is integrable if there is an open dense
subset L ⊂ M such that L is fibred by b-dimensional tori and the smooth bundle
coordinate charts (I, φ) : U → Da × Tb conjugate ϕ to a smooth translation-
type flow t · (I, φ) = (I, φ + tξ(I)) on the fibres of L. This local form, classically
known as action-angle coordinates, suggests that integrable flows are dynamically
uninteresting. The example of the geodesic flow of a compact 3-dimensional Sol
manifold which is completely integrable and has positive topological entropy, due
to Bolsinov and Taimanov [6], is proof that this is not the case. The present
paper generalises the examples of [6, 11]. First, it shows how to construct inte-
grable convex hamiltonian systems on cotangent bundles of certain solmanifolds
in higher dimensions that are analogues to the Sol geometric 3-manifolds when
the monodromy group is not R-split; second, it shows that Lax representations
of Bogoyavlenskij-Toda lattices are essential to construct these integrable systems,
and moreover, the double-bracket Lax representations are essential to understand
the dynamics on the singular set; third, the Lax map of a Bogoyavlenskij-Toda
lattice and the ‘momentum map’ of a natural F-structure on the solmanifold form
a dual pair; and, finally, the topological classification of these integrable systems
can be resolved by classifying abelian groups of Anosov toral automorphisms by
the topological entropy function.

This appears to be a novel and interesting phenomenon: the construction of these
integrable systems uses the machinery of Lax representations and R-matrices, while
their dynamical classification uses machinery developed to understand hyperbolic
dynamical systems.

Let us now sketch the constructions and results of the present paper.

1.1. The Sol-manifolds. Let A be a torsion-free, abelian group of diffeomor-
phisms of Tb. The group A acts on Tb ×AR, where AR = A⊗Z R, via the diagonal
action

∀α ∈ A, y ∈ Tb, x ∈ AR : α ⋆ (y, x) := (α(y), x+ α⊗ 1). (1.1)

This action is free and proper. The compact, smooth quotient is denoted by Σ or
ΣA. The fibring of Σ by the tori Tb equips Σ with a natural F-structure.

Henceforth it is assumed that A < GL(b;Z) is an abelian group of semi-simple
elements, hence contained in a Cartan subgroup of GL(b;C), and therefore an
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exponential subgroup of GL(b;C). When A is an exponential subgroup of GL(b;C),

the universal cover Σ̃ of Σ admits the structure of a solvable Lie group as follows:
When A is an exponential subgroup of GL(b;C), AR is naturally identified with an
abelian subgroup of GL(b;R). From this, there is a natural Lie group structure on
Rb ⋆ AR =: S and Zb ⋆ A =: SZ is a lattice subgroup of S, c.f. 2.2. In the general
case, A contains a finite-index exponential subgroup A2 [26, Theorem 4.28]. The
finite covering Σ2 of Σ induced by A2 has a universal cover with a solvable Lie
group structure; in this case, the fundamental group of Σ need not embed as a
subgroup in this universal cover, although it does act as a free and proper group
of deck transformations [26, pp.s 70-71]. An elementary argument shows that if Γ
is a finite group of deck transformations and ϕ is an integrable flow on M that is
Γ-invariant, then the induced flow on M/Γ is integrable, also. So, to simplify the
discussion in this introduction, without losing generality, it will be assumed that A
is an exponential subgroup of GL(b;C).

1.2. Integrable geodesic flows. Let yi be coordinates on Cn which diagonalise
A. Define complex-valued differential 1-forms on Σ by

νi = exp(−〈ℓi, x〉) dyi, and ηi = dxi (1.2)

where ℓi ∈ Hom(AR;R) is the linear form which maps x ∈ AR to the logarithm of
the modulus of its i-th eigenvalue and xi = 〈ℓi, x〉. A riemannian metric on Σ can
be defined by

g =
∑

i,j
Qij νi · νj +

∑

i,j
Rij ηi · ηj +

∑

i,j
Sij ηi · νj , (1.3)

where Q,R and S are constant, complex symmetric matrices chosen so that g is a
real, symmetric, positive-definite (0, 2)-tensor. The metric g is the general form of
a left-invariant metric on S = Rb ⋆AR. When the off-diagonal term S vanishes, the
subgroups Rb and AR are orthogonal, totally geodesic and flat. By left-invariance
of g, each left translate of these two subgroups share these properties.

Question A. Which metrics g have a completely integrable geodesic flow?

Some answers are known. The examples of Bolsinov and Taimanov shows that
when A is a cyclic group, then the geodesic flow is completely integrable for g with
S = 0 and Q,R arbitrary [6, 7]. The present author showed that when A has rank
b − 1 (so A is R-split), Qij = δijǫ

2
i , R is of a special form and S = 0, then the

geodesic flow is completely integrable. To explain the special form of R, write the
Hamiltonian of g in canonical coordinates:

2Hg =
∑

ij
Qij

∗ exp(〈ℓi + ℓj , x〉) +
∑

ij
Rij pxi

pxj
, (1.4)

where Qij
∗ = Qij pyi

pyj
(no sum). Because yi is a cyclic variable, pyi

is a first
integral. Hg reduces to a family of Bogoyavlenskij-Toda-like Hamiltonians in the
canonical variables (x, px). If one diagonalises Q, then the complete integrability
of the Bogoyavlenskij-Toda Hamiltonian dictates the form of R. The introduction
of [11] has an explicit example.1 The work of Adler & Van Moerebeke and Kozlov
& Treschev suggests that when S = 0 the only completely integrable Hamiltonians
Hg arise from Bogoyavlenskij-Toda lattices or their deformations [3, 23, 22].

The preceding argument glosses over a subtlety: the cyclic variables pyi
are

defined only on the universal cover. In the above cases, one can construct smooth
integrals that descend to the quotient; this is true in general, but the difficulty lies
in choosing R. This is related to Lax representations.

1This is also referred to as the Toda lattice or the Kostant-Toda lattice, but Kostant in [21]
attributes to Bogoyavlenskij [4] the recognition of the role played by root systems of semisimple

Lie algebras.
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1.3. Lax Representations and momentum maps. On the covering Σ̂ = Tb ×
AR, there is the obvious free action of Tb. This induces an F-structure on Σ, which

one may think of as a locally-defined free action of Tb. The momentum map f̂ of
the Tb-action induces a map f by equivariance, as illustrated in the right-hand side
of (1.5):

L∗
R

��

T ∗Σ̂

Π̂

��

L̂oo f̂ // Lie(Tb)
∗

(mod A)

��

(mod ∼)

''OOOOOOOOOOO

L∗
R T ∗Σ

Loo
f 33

// Lie(Tb)
∗
/A

coll. // Lie(Tb)
∗
/ ∼ .

(1.5)

Lie(Tb)
∗
/A is neither a smooth manifold nor a Hausdorff space but it does contain

an open and dense subspace that is a smooth manifold. One can collapse the
singular set of Lie(Tb)

∗
/A to a single point to define a Hausdorff topological space

Lie(Tb)
∗
/ ∼, which is a smooth manifold outside of a single point, as illustrated in

figure 1. Since the collapse is A-invariant, the map f is defined naturally. The map
f is a first integral of Hg and one can loosely think of f as the momentum map of
the locally-defined Tb action on T ∗Σ.

regular orbits

singular orbits

mod ∼

reduced space: Lie(Tb)
∗
/ ∼

unreduced space: Lie(Tb)
∗

Figure 1. The quotient map from Lie(Tb)
∗ → Lie(Tb)

∗
/ ∼.

The regular points are points with a non-zero component in each
eigenspace of A; the singular set is the complement.

On the left of (1.5) is a map L, called a Lax matrix, that is implicit in the
identification of Hg with a Bogoyavlenskij-Toda Hamiltonian. The construction of
a Poisson Lax map that Poisson commutes with f is the key difficulty in proving
the complete integrability of Hg.

Question B. What conditions on A imply the existence of a Poisson Lax map L

such that the Tb-momentum map f and L form a dual pair?

Implicit in the two papers of Bolsinov and Taimanov is the fact that if A is cyclic,
then this question is trivially soluble. In [11, p. 529], the present author shows that
there is a Poisson map that Poisson commutes with the Tb-momentum map f when
A < GL(b;Z) is R-split and of finite index in its centraliser (the relation to Lax
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maps is hinted at in the remark on [11, p. 529]). To generalise that construction,
it appears necessary to use the machinery of Lax representations.

Tb
× 0 Tb

× v

geodesic

v · y

y

Figure 2. A return
map.

1.3.1. Positive topological entropy. The geodesic flow of g
must have positive topological entropy, since π1(Σ) has ex-
ponential word growth [14]. When S = 0, there is a direct

proof of this: since AR is flat and totally geodesic in Σ̃, as
are all its left-translates, each curve t 7→ tv + y for v ∈ AR,
y ∈ Rb is a geodesic. On Σ, for v ∈ A, the geodesic is
periodic and one sees that the geodesic flow induces the re-
turn map on Tb defined by y 7→ v · y – which is a partially
hyperbolic, and generally Anosov, automorphism of Tb (see
figure 2).

The appearance of such ‘subsystems’ heavily constrains
the topological conjugacy class of a completely integrable
geodesic flow of the form of g.

1.4. Results. Let us sketch the main theorems of this paper.

1.4.1. Complete integrability.

Definition 1. A torsion-free abelian subgroup A < GL(b;Z) is maximal if its
elements are semisimple and it is of finite index in its centraliser.

Theorem 1. If A < GL(b;Z) is a maximal subgroup, then there is a Poisson Lax
map L such that (1.5) describes a dual pair, see (3.14). In particular, there is a
reversible Finsler metric on ΣA whose geodesic flow is completely integrable.

If, in addition, an irreducible element in A has exactly r real eigenvalues and
2c non-real eigenvalues, then the geodesic flow of the riemannian metric g (1.3) is
completely integrable when its Hamiltonian is defined as in (3.16) with root system
g(m) in the cases described by Table 1.

In all cases, the singular set is a real-analytic variety. Consequently, the inte-
grable systems are semi-simple in the sense of [10].

r c g(m) r c g(m)

∗ 0 A
(1)
n , D

(2)
n+1 2 1 D

(3)
4

0 ∗ A
(1)
n , D

(2)
n+1 2 ∗ B

(1)
n , C

(1)
n

1 ∗ A
(2)
2n 3 ∗ A

(2)
2n−1

4 ∗ D
(1)
n

Table 1. Conditions on eigenvalues and root systems which pro-
duce a riemannian metric with integrable geodesic flow (∗ is an
arbitrary positive integer).

The first row in the upper left corner of the table summarises the result of [11].
In the cases not covered in the table, it is uncertain if ΣA admits a riemannian
metric with completely integrable geodesic flow – the construction here yields only
completely integrable geodesic flows of reversible Finslers. If not, one would have
the first example of a compact smooth manifold that admits a completely integrable
reversible Finsler, but not a riemannian, geodesic flow.
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1.4.2. Topological Entropy and Iso-energetic Topological Conjugacy. The tangent
spaces to the Tb-fibres of Σ form a sub-bundle V ⊂ TΣ. Let V⊥ ⊂ T ∗Σ be the
annihilator of V. The subspace V⊥ is invariant under the geodesic flow of Theorem
1 and that geodesic flow has positive topological entropy on V⊥. We prove

Theorem 2. Let Σ = ΣA be as in Theorem 1 and let ϕ be the Hamiltonian flow
on T ∗Σ induced by the Hamiltonian H defined in (3.16). Then

(1) V⊥ is a weakly normally hyperbolic invariant manifold. Its stable and un-
stable manifolds coincide and equal the pre-image of the equivalence class
of 0 in Lie(Tb)

∗
/ ∼ under the Tb-momentum map f ;

(2) the topological entropy of ϕ|H−1( 12 ) equals that of ϕ|V⊥ ∩ H−1( 12 ), when

H is induced by the A
(1)
n Bogoyavlenskij-Toda lattice;

(3) in all cases, the topological entropy of ϕ|V⊥ ∩ H−1( 12 ) is calculable (see
Table 5).

The construction of the Lax map in theorem 1 is unique up to the action of a
permutation group. If φ1, φ2 are two such permutations and ϕ1, ϕ2 are the result-
ing geodesic flows, an interesting question is whether these flows are topologically
distinct. A topological invariant, namely the marked homology spectrum, does
distinguish these flows in many cases even when topological entropy cannot. To
explain, let

h(v) = htop(v) h : A → R (1.6)

be the entropy function, where v ∈ A is viewed as a Tb-automorphism.

Theorem 3. If there is a topological conjugacy of ϕ1, ϕ2 on their respective unit
sphere bundles, then there is an automorphism f : A → A such that

h ◦ f = h. (1.7)

If the number-theoretic closure of A is a group of Anosov automorphisms, then f is
induced by a Galois automorphism.

In many cases, the group of Galois automorphisms is trivial, which implies that
each of the constructed Hamiltonian flows must be topologically non-conjugate. In
general, one should not expect the number-theoretic closure of A to be a group of
Anosov automorphisms, though.

Question C. Which automorphisms of A fix the entropy function h?

This leads to a further question, whose formulation is somewhat technical and
is deferred to section 7, question F. Finally, theorem 7.3 provides information on
the number of distinct topological conjugacy classes of integrable Hamiltonian flows
provided by theorem 1.

Question C is a rigidity question: to what extent does the entropy of an action
determine that action. An approach to this question is to ask which embeddings
of Za ∼= A into GL(b;Z) have equal entropies. Katok, Katok and Schmidt give
examples of iso-entropic actions of Z2 on T3 by maximal subgroups of GL(3;Z)
that are conjugate in GL(3;Q) but not conjugate in GL(3;Z) [20]. However, the
suspension manifolds of these actions are not homotopy equivalent. Indeed, if
A′ < GL(b;Z) is not conjugate to A in GL(b;Z), then π1(ΣA′) is not isomorphic to
π1(ΣA). Thus, question C is somewhat finer than the iso-entropic rigidity problem
examined in [20].
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1.5. Two additional questions. Let Σ be a torus bundle over a torus of the
type described in section 1.1. Σ is aspherical and the fundamental group of Σ is
a poly-Z group2, so Theorem 15B.1 of [29] implies that π1(Σ) determines Σ up
to homeomorphism. The standard smooth structure on Σ is defined by the above
construction. In general, the topological manifold Σ may admit several inequivalent
smooth structures.

Question D. Which smooth structures on the topological manifold Σ admit a rie-
mannian or Finsler metric whose geodesic flow is completely integrable?

This question is already quite interesting when A = 1 and Σ is a torus since
[12] shows that the integrals cannot all be real-analytic if the smooth structure is
non-standard. It is unknown if there are analogous obstructions when A 6= 1.

And, finally,

Question E. What conditions on A < GL(b;Z) imply that ΣA admits a riemann-
ian or Finsler metric whose geodesic flow is completely integrable?

Theorem 4.1 shows that there are natural examples of groups A that are not
maximal, yet ΣA admits a completely integrable Finsler. These examples are con-
structed using symmetries provided by number-theoretic considerations. The diffi-
culty in the general case, where there are no obvious symmetries, is the construction
of the Lax map L appears to break down.

2. Notation and Preliminary Definitions

2.1. Integrability. The present paper’s definition of complete integrability follows
that of [5, 11].

Let Σ be a real-analytic manifold. The set of smooth functions on the cotangent
bundle of Σ, C∞(T ∗Σ), has two canonical algebraic structures: it is an abelian
algebra when equipped with the natural operations of point-wise addition and mul-
tiplication; and, coupled with the canonical Poisson bracket, {, }, (C∞(T ∗Σ), {, }) is
a Lie algebra of derivations of the algebra C∞(T ∗Σ). A hamiltonian H ∈ C∞(T ∗Σ)
induces a vector field YH := { , H}. For A ⊂ C∞(T ∗Σ) and P ∈ T ∗Σ, let
dAP = span {dfP : f ∈ A} and let Z(A) = {f ∈ A : {A, f} ≡ 0}. Let
k = supP dim dAP , l = supP dim dZ(A)P . Let us say P ∈ T ∗Σ is A-regular if there
exist f1, . . . , fk ∈ A such that P is a regular value for the map F = (f1, . . . , fk)
and f1, . . . , fl ∈ Z(A); if P is not A-regular then it is A-critical. Let L(A) be the
set of A-regular points. H is assumed to be proper.

Definition 2 (c.f. [5]). H ∈ C∞(T ∗Σ) is integrable if there is a Lie subalgebra
A ⊂ C∞(T ∗Σ) such that:

(1) H ∈ Z(A);
(2) k + l = dimT ∗Σ and L(A) is an open and dense subset of T ∗Σ.

If k = l = dimΣ, we will say that H is completely integrable.

Bolsinov and Jovanovic [5] introduced this definition of complete integrability.
The standard definition of complete integrability (resp. non-commutative integra-
bility) are special cases of Definition 2 with A = span {f1, . . . , fk} and l = k (resp.
l ≤ k) and the regular-point set of F = (f1, . . . , fk) is dense. Definition 2 is both
more intrinsic, and more suited to the examples of the present paper. Note that the
present definition of integrability is equivalent to that of Dazord & Delzant [13].

2That is, there is a sequence of subgroups 0 = Dm⊳Dm−1⊳· · ·⊳D0 = D such that Di/Di+1
∼= Z

for all i.
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2.2. Construction of the solmanifolds and number theory. There is a well-
known correspondence between abelian subgroups of GL(b;Z) and groups of units
in algebraic number fields of degree d dividing b [20]. The present paper exploits
this correspondence extensively. The following section establishes notation that
is used throughout. In terms of the terminology in the introduction, we use the
following translation table:

abelian A < GL(b;Z) → a group of units in the field generated by the
eigenvalues of all a ∈ A;

Zb → a direct sum of copies of a subgroup of the
integers of a number field.

2.2.1. Preliminaries. Let

Q ⊂ F
ι⊂ E

be an inclusion of algebraic number fields. For a field extension E/F let the set of
embeddings of E into C which fix F be denoted by GE/F ; we adopt the convention
/Q is omitted. Define vector spaces

WE =
∑

σ∈GE

Cσ, (2.1)

and

VE = {x ∈ WE : xσ̄ = x̄σ ∀σ ∈ GE }, (2.2)

where ¯ denotes complex conjugation and σ̄ is the embedding σ followed by complex
conjugation. We also define

Vo,E = {x ∈ VE :
∑

σ∈GE

xσ = 0, & xσ = xσ̄ ∀σ ∈ GE }. (2.3)

GE is a basis of VE which induces the dual basis G∗
E of V∗

E . An element in the
dual basis shall be denoted by σ̂ for σ ∈ GE . The basis and dual basis establish a
linear isomorphism between VE and V∗

E which shall be denoted by the circumflex
operator, VE → V∗

E : x 7→ x̂, whose inverse is V∗
E → VE : x 7→ x̌.

One obtains a basis of V∗
o,E as follows: note that t̂ = 1

|GE |

∑

σ∈GE
σ̂ and σ̂ − ˆ̄σ

vanish on Vo,E for all σ ∈ GE . If one defines Gr
E to be the set of real embeddings

of E and Gc
E to be one-half of the non-real embeddings such that Gc

E is disjoint
from its complex conjugate, then one observes that

V⊥
o,E = R · t̂⊕

∑

σ∈Gc
E

R · (σ̂ − ˆ̄σ),

V∗
o,E =

∑

σ∈BF

R · σ̂|Vo,E

(2.4)

where BE = Gr
E ∪Gc

E .

The inclusion F
ι⊂ E induces

VE
ι∗ // // VF where ι∗(σ) = σ|F ,

and V∗
E

oo ι ? _V∗
F where ι(τ̂) =

∑

σ∈GE ,σ|F=τ

σ̂. (2.5)

Finally, define a map V∗
E

α // // V∗
o,F by

α = ∗ ι̂∗, σ̂ 7→ τ̂ |Vo,F
where τ = σ|F , (2.6)
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∗ is the adjoint of the inclusion map Vo,F


⊂ VF and ι̂∗ = ι̂∗ .̌ This allows one to

define a pairing between V∗
E and Vo,F , denoted as follows

〈σ̂, x〉 := 〈α(σ̂), x〉 ∀σ ∈ GE , x ∈ Vo,F ,
= 〈τ̂ , x〉 where τ = σ|F . (2.7)

Since x =
∑

τ∈GF
xτ · τ , it is apparent that
〈σ̂, x〉 = x(σ|F ) ∀σ ∈ GE , x ∈ Vo,F , (2.8)

so the notation is natural.

2.3. An embedding of OE in VE. Let OE be the ring of integers of E, and let
UE be the group of multiplicative units of OE . Define a map η : OE → VE by

η(α) :=
∑

σ∈GE

σ(α) · σ, (2.9)

for each α ∈ OE .

Lemma 2.1. The map η is an embedding whose image—call it NE—is a discrete,
cocompact subgroup of VE.

Proof. This is standard. �

Let TE = VE/NE be the resulting torus. TE is equipped with a canonical affine
structure from VE and the group UE acts by automorphisms of TE defined by

u · y =
∑

σ∈GE

σ(u) · yσ · σ + NE , (2.10)

where y =
∑

σ∈GE
yσ · σ + NE is an element in TE and u ∈ UE . The action

in (2.10) is well-defined since NE is mapped to itself by UE . A fortiori, equation
(2.10) also defines an action of UF ⊂ UE as an abelian group of automorphisms of
TE .

2.4. An embedding of U+
F in Vo,F . Define a map ℓ : UF → VF by

ℓ(u) =
∑

σ∈GF

ln |σ(u)| · σ. (2.11)

Since σ̄ is σ followed by complex conjugation, it is clear that LLLF =: im ℓ ⊂ Vo,F .
Dirichlet’s theorem on the group of units of an algebraic number field characterises
the image of ℓ as a discrete, cocompact subgroup of Vo,F , while ker ℓ =: RF is the
set of units all of whose conjugates lie on the unit circle. Stated otherwise, there is
an unnatural splitting of UF via a commutative diagram

RF
� � //

=

��

UF
// //

=

��

UF /RF
ℓ
∼=

//

∼=

��

LLLF ,

∼=

��
RF

� � // RF ⊕ U+
F

// // U+
F

∼= // Zr+c−1,

where r (resp. 2c) is the number of real (resp. non-real) embeddings of F . When
F has a real embedding, which one may take to be the identity embedding F ⊂ C,
then RF = {±1} and U+

F may be taken to be the multiplicative group of positive
units in UF — hence the notation. To summarise

Lemma 2.2. The image of the map ℓ : U+
F → Vo,F — call it LLLF — is a discrete,

cocompact subgroup of Vo,F isomorphic to U+
F .
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2.5. An action of U+
F on TE ×Vo,F . For y ∈ TE , x ∈ Vo,F and u ∈ U+

F define

u · (y, x) := (u · y, x+ ℓ(u)). (2.12)

This action is clearly free and proper. Let Σ denote the compact manifold obtained
by quotienting TE ×Vo,F by this action of U+

F .

Lemma 2.3. There is a commutative diagram of natural maps

VE ×Vo,F // //
� _

=

����

TE ×Vo,F
// //

� _

=

����

(TE ×Vo,F )/U+
F� _

=

����
Σ̃

π̃ // // Σ̂
π̂ // // Σ.

(2.13)

Therefore, π1(Σ) is naturally isomorphic to the semi-direct product ∆ = U+
F ⋆OE,

while there is a natural fibring of Σ by tori over a torus

TE
� � // Σ

p // // To,F , (2.14)

where To,F = Vo,F /LLLF .

Proof. Naturality of the construction implies the lemma. �

2.6. The cotangent bundle T ∗Σ. The vector space structures on VE and Vo,F

give a tautological trivialisation of their cotangent bundles. Lemma 2.3 therefore
implies that there is a commutative diagram

V∗
E ×VE ×V∗

o,F ×Vo,F // //
� _

=

����

V∗
E ×TE ×V∗

o,F ×Vo,F // //
� _

=

����

(V∗
E ×TE ×V∗

o,F ×Vo,F )/U+
F� _

=

����
T ∗Σ̃

Π̃ // // T ∗Σ̂
Π̃ // // T ∗Σ,

(2.15)

where Π̂ is the covering map induced by π̂, etc. Let us introduce coordinates on
T ∗Σ̂ by

P ∈ T ∗Σ̂ ⇐⇒ P = (Y, y +NE ,X, x) ∈ V∗
E ×TE ×V∗

o,F ×Vo,F .

The action of U+
F on T ∗Σ̂ is the natural lift of the action on Σ

u · P = (u · Y, u · y +NE ,X, x+ ℓ(u)) (2.16)

where u · y is defined in equation (2.10) and u · Y =
∑

σ∈GE
Yσ · σ(u)−1 · σ̂ is the

induced contragredient action.

2.7. Functions on T ∗Σ. The function P 7→ X is U+
F -invariant, so one may view X

as a submersion T ∗Σ ։ V∗
o,F .

Fix a positive integer bσ for each σ ∈ GE and define the function

γσ(P ) := exp(bσ · 〈σ̂, x〉)× |Yσ|bσ (2.17)

where the pairing 〈σ̂, x〉 is defined in equation (2.7).

Lemma 2.4. The function γσ is UF -invariant and it is real-analytic if bσ is even.

Proof. From equation (2.16), we know that for each u ∈ UF

γσ(u · P ) = γσ(P )× exp(bσ ln |σ(u)|)× |σ(u)|−bσ = γσ(P ). (2.18)

It is clear that exp(bσ · 〈σ̂, x〉) is real-analytic, and |Yσ|bσ is real-analytic if bσ is a
positive even integer. �
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Remark 2.1. Fix even integers bσ as in lemma 2.4. One may define a momentum-
like map λ : T ∗Σ → V∗

o,F ⊕V∗
E by

λ(P ) = X⊕
∑

σ∈GE

γσ(P ) · σ̂, ∀P ∈ T ∗Σ. (2.19)

When the universal cover Σ̃ of Σ admits the structure of a solvable Lie group with
∆ as a lattice subgroup, V∗

o,F ⊕ V∗
E – as the dual of a Lie algebra – admits a

canonical Poisson structure. In this case, the map λ is left-invariant and Poisson
and therefore mimics the properties of the classical momentum map.

3. Lax Representations

3.1. Real split affine Lie algebras. Let us briefly recall the construction underly-
ing the Lax representation of periodic Bogoyavlenskij-Toda lattices. This discussion
follows that in [27, 1, 2]. Let g be a simple real Lie algebra with the real split Cartan
sub-algebra h; g is also known as the real normal form of the simple complex Lie
algebra g ⊗ C. The Cartan-Killing form of g is denoted by 〈〈, 〉〉 when viewed as
a bilinear form on g, and it is denoted by κ when viewed as a linear isomorphism
of g with g∗. Recall that 〈〈, 〉〉 is non-degenerate on h. As h is a real split Cartan
sub-algebra, g decomposes as

g = h+
∑

r∈Ψ∗

gr (3.1)

where Ψ∗ ⊂ h∗ is the set of roots and gr is the root space associated with r,
gr = {x ∈ g : adhx = 〈r, h〉 x ∀h ∈ h}. There is a set of simple roots Ψ0 ⊂ Ψ∗

such that every root is an integer linear combination of the roots in Ψ0 with entirely
non-negative or non-positive coefficients. The height of a root is the sum of these
coefficients; there is a unique root, η, of minimal height. Let Ψ be Ψ0 ∪ {η} .

Define L to be the set of Laurent polynomials in the variable λ with coefficients
in g; L inherits an obvious Lie algebra structure. Let d = λ ∂

∂λ be a derivation;
define [d, x · λn] = nx · λn for all integers n and x ∈ g. Then ĝ = L+R · d is a real

split Lie algebra with Cartan sub-algebra ĥ = h + R · d. The Cartan sub-algebra
induces a weight-space decomposition of L as

L = h+
∑

r∈ΨΨΨ∗

Lr (3.2)

where ΨΨΨ∗ =
{

r ∈ ĥ∗ : r|h ∈ Ψ∗ ∪ {0}, 〈r, d〉 ∈ Z, r 6= 0
}

. The weight set ΨΨΨ∗ has a

basis of simple weights ΨΨΨ = Ψ ∪ {ηηη}, where ηηη|h = η and 〈ηηη, d〉 = 1. Each r ∈ ΨΨΨ∗ is
an integer linear combination of roots in ΨΨΨ. By defining the height of r as the sum
of these coefficients one obtains the principal grading

L =
∑

n∈Z

Ln, (3.3)

where L0 = h, Ln =
∑

ht(r)=n Lr otherwise, and [Ln,Lm] ⊆ Lm+n for all m,n. It

is observed that
L±1 = gηλ

±1 +
∑

r∈Ψ

g±r =
∑

r∈ΨΨΨ

R · e±r (3.4)

the same sign appearing throughout, and er is a vector normalised so that
κ · [er, e−r] ∈ Ψ0. The sub-algebras L+ =

∑

n≥0 Ln,L− =
∑

n<0 Ln permit the
definition of a second Lie algebra structure on L, defined by

[x, y]R := [x+, y+]− [x−, y−] (3.5)

for x = x+ + x+, y = y− + y+ ∈ L− ⊕ L+. The Cartan-Killing form κ allows one
to identify L∗

n = L−n for all n, in such a way that κ(er) = e−r or 〈〈er, e−s〉〉 = δr,s.
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Indeed, note that er = er · λn where r = r|h and n = 〈r, d〉 for all roots r ∈ ΨΨΨ, so
it suffices to find a suitable basis of g in order to define the vectors er. One also
knows that

Lemma 3.1. For each µ ∈ L∗
−1, the affine subspace µ + L∗

0 + L∗
1 is a Poisson

subspace of L∗
R. The Casimirs of L∗ are in involution on L∗

R.

Proof. See references [27, 1]. �

3.2. A second splitting. Let 0L = h +
∑

r∈ΨΨΨ∗
R · er, a sub-algebra of the loop

algebra L on which the Cartan-Killing form is non-degenerate. One can distinguish
two sub-algebras 0L± such that 0L = 0L− ⊕ 0L+ as a vector space:

0L− =
∑

r∈ΨΨΨ+
R · (er − e−r), 0L+ = h+

∑

r∈ΨΨΨ+
R · er, so

0L∗
− ≡ 0L⊥

+ =
∑

r∈ΨΨΨ+
R · er, 0L∗

+ ≡ 0L⊥
− = h+

∑

r∈ΨΨΨ+
R · (er + e−r),

(3.6)

where ΨΨΨ+ ⊂ ΨΨΨ∗ is the set of positive roots. One can define a grading on both 0L±

by defining the height of a root r ∈ ΨΨΨ+ to be ht(r) = ht(r) + (1 + k) 〈r, d〉 where
k is the height of the maximal root of g. With this grading, a basis of 0L+1 (resp.

0L−1) is {er : r ∈ ΨΨΨ} (resp. {er − e−r : r ∈ ΨΨΨ}) while a basis of 0L∗
+1 (resp. 0L∗

−1)
is {er + e−r : r ∈ ΨΨΨ} (resp. {e−r : r ∈ ΨΨΨ}). One therefore knows that 0L admits
an R-bracket analogous to that defined in (3.5) and that Lemma 3.1 also holds for

0LR.

Remark 3.1. If α is an automorphism of the graded Lie algebra L that fixes h, then
the fixed point set of α is a sub-algebra that inherits a grading, splitting and a root
space decomposition from L. The constructions of both subsections 3.1 and 3.2 are
applicable in this case, too. The automorphism α satisfies α(x · λn) = α(x) · (ǫλ)n
for all x ∈ g and n, where ǫ is a primitive order(α) root of unity. This construction
yields the so-called twisted loop algebras. The twisted loop algebra is traditionally
denoted by g(m) where m is the order of the automorphism α; when m = 1, one
has the usual loop algebra L.

3.3. Examples. Let g = A2 = sl(3;R). For h one can take the sub-algebra of
trace zero diagonal matrices and for the basis of positive roots of g one can take
the roots r1 and r2 with the minimal root η:

r1 =





1 0 0
0 −1 0
0 0 0



 , r2 =





0 0 0
0 1 0
0 0 −1



 , η = −r3 =





−1 0 0
0 0 0
0 0 1



 , (3.7)

which satisfy the linear relation r1 + r2 + η = 0. A root r ∈ ΨΨΨ may be written
formally as r = ±ri + n where n = 〈r, d〉. The height of r is then computed to be
3n ± 1 for i = 1, 2 and 3n ± 2 for i = 3. From this, one can see that the graded
pieces of L, as in (3.3), are L0 = h and

L+1 =











λa1 α1 0
0 λa2 α2

λα3 0 λa3










, L+2 =











λ2a1 0 α3

λα1 λ2a2 0
0 λα2 λ2a3










,

L−1 =











λ−1a1 0 λ−1α3

α1 λ−1a2 0
0 α2 λ−1a3










, L−2 =











λ−2a1 λ−1α1 0
0 λ−2a2 λ−1α2

α3 0 λ−2a3










,

(3.8)

where ai, αi are real numbers and
∑

ai = 0.
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The splitting in (3.6) of 0L implies that the root spaces of height ±1 and their
duals are

0L−1 =











0 α1 −α3λ
−1

−α1 0 α2

α3λ −α2 0










, 0L∗

−1 =











0 α1 0
0 0 α2

α3λ 0 0










,

0L+1 =











0 α1 0
0 0 α2

α3λ 0 0










, 0L∗

+1 =











0 α1 α3λ
−1

α1 0 α2

α3λ α2 0










, (3.9)

where the αi are real.

3.4. Bijections. Assume that F/Q is an algebraic field of degree m with r real
embeddings and 2c non-real embeddings such that r + c = n, and that g is a real
split affine Lie algebra of rank n − 1. Since BF , the set of real embeddings of F
plus one-half the set of complex embeddings of F , has n elements and the simple
roots of L, ΨΨΨ, have n elements, the sets are isomorphic.

Definition 3. Let B be the set of bijections BF → ΨΨΨ.

Each ρ ∈ B can be extended to a map GF → ΨΨΨ by ρ(σ̄) := ρ(σ) for all σ ∈ BF .
This extension shall be understood throughout.

Additionally, each ρ ∈ B naturally induces a linear isomorphism φ = φρ : V∗
o,F →

h∗. To define φ let us recall two things. First, note that the projection ĥ∗ ։ h∗

that is dual to the inclusion h →֒ ĥ induces the bijection ΨΨΨ ∼= Ψ : r 7→ r = r|h.
Second, there are unique positive integers ωr such that

∑

r∈Ψ

ωrr = 0, gcd(ωr : r ∈ Ψ) = 1. (3.10)

For each τ ∈ BF , define nτ to be 1 if τ is a real embedding; and 2 if not. Then,
define

φ( τ̂ |Vo,F
) = n−1

τ ωrr where r = ρ(τ). (3.11)

Since τ̂ equals ˆ̄τ when restricted to Vo,F , the sole linear dependence relation

amongst the set
{

τ̂ |Vo,F
: τ ∈ BF

}

is the relation

∑

τ∈BF

nτ τ̂ |Vo,F
=

∑

τ∈GF

τ̂ |Vo,F
= 0.

Thus, equation (3.10) implies that φ extends to a linear isomorphism.

3.5. Lax representations. Fix ρ ∈ B and let φ = φρ be the induced linear
isomorphism. Let Φ : V∗

o,F → h∗ be a linear map and let g± : V∗
E ×GE → L∗

± be

smooth maps. Define a map L = Lρ,Φ : T ∗Σ̃ → L∗ by

κ−1 ·L(P ) =
∑

σ∈GE

g−,σ(Y) ·er + Φ(X) +
∑

σ∈GE

g+,σ(Y) ·exp(bσ ·〈σ̂, x〉) ·e−r (3.12)

where it is understood that r = ρ(σ|F ) in the sums and L∗ is identified with L via
the Cartan-Killing form κ.

There are several choices of Lax representation that are useful. The first is (in
all cases, r = ρ(σ|F ) is understood)

κ−1 · L(P ) =
∑

σ∈GE

|Yσ|bσ · er + Φ(X) +
1

2
×

∑

σ∈GE

exp(bσ · 〈σ̂, x〉) · e−r, (3.13)

while the second is

κ−1 · L(P ) =
∑

σ∈GE

er + Φ(X) +
1

2
×

∑

σ∈GE

|Yσ|bσ · exp(bσ · 〈σ̂, x〉) · e−r, (3.14)
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and a third is

κ−1 · L(P ) = Φ(X) +
1√
2
×

∑

σ∈GE

|Yσ|
1
2 bσ · exp(1

2
bσ · 〈σ̂, x〉)(er + e−r). (3.15)

Note that the Lax representations in (3.13–3.14) are related to the splitting of the
loop algebra in section 3.1; the final Lax representation in (3.15) is related to the
splitting in section 3.2. In all cases, the pullback of the Casimir x 7→ 1

2 ×κ(x, x) on
L∗ by any of the three Lax matrices in (3.13–3.15) L is equal to

H :=
1

2
× 〈Q · X,X〉+ 1

2

∑

σ∈GE

|Yσ|bσ · exp(bσ · 〈σ̂, x〉), (3.16)

where Q : V∗
o,F → Vo,F is defined by Q = Φ∗κΦ. This Hamiltonian is fibre-wise

quadratic — hence, induced by a riemannian metric — iff bσ = 2 for all σ; in all
cases, it is fibre-wise convex. The next theorem implies that there are constraints
on F if H is fibre-wise quadratic.

As a second step, recall that sl2R has a basis h, e+, e− such that [h, e±] = ±e±,
and [e+, e−] = 2h. The Cartan-Killing form identifies the dual basis as h, e−, e+.
For each σ ∈ GE , let sl2Rσ be a copy of sl2R and let hσ, e±,σ be copies of h, e±.

Define L1 : T ∗Σ̃ → g∗1, g1 =
∑

σ∈GE

sl2Rσ by

L1(P ) =
∑

σ∈GE

Yσ · hσ + exp(〈σ̂, y〉) · e−,σ. (3.17)

Theorem 3.2. L1 is a Poisson map. L = Lρ,Φ : T ∗Σ̃ → L∗
R is a Poisson map iff

there is a c ∈ 1
2Z

+ such that:

(1) for all σ ∈ GE and r ∈ ΨΨΨ with ρ(σ|F ) = r, one has n−1
(σ|F )bσωr = c; and

(2) Φ = c−1 × φρ.

The map L2 = L + L1 : T ∗Σ̃ → L∗ + g∗1 is a Poisson embedding if either g+ or g−
is an embedding and E = F .

Proof. The proof shall assume that L is defined by equation (3.13); the remaining
cases are not significantly different. To prove that L1 is a Poisson map, one needs
to prove that

{f◦L1, g◦L1}T∗Σ̃ = {f, g}h∗
1
◦L1, (3.18)

for all smooth functions f, g on h∗1. It suffices to verify equation (3.18) holds for
linear functions f, g, for a single copy of sl2R, and a single pair of conjugate variables
Y and y. For f = h and g = e+ one sees that

{h, e+}sl2R∗ ◦L1 = −〈〈L1, [h, e+]〉〉 = −ey, (3.19)

while

{h◦L1, e+◦L1}T∗Σ̃ = {Y, ey} = −ey. (3.20)

Since h and e+ are functionally independent at almost all points on almost all
co-adjoint orbits, this proves that L1 is a Poisson map.

To prove the claim concerning L, one needs to prove that

{f◦L, g◦L}T∗Σ̃ = {f, g}L∗
R
◦L, (3.21)

for all f, g ∈ C∞(L∗). As above, it suffices to verify equation (3.21) holds for all
f, g ∈ LR. Given the bracket relations on LR, it suffices to prove the equation for
all f, g ∈ L−1 + L0 + L+1. Let us break this into cases:
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(1) If f, g ∈ L0 or f ∈ L−1 and g ∈ L+1 or f ∈ L0 and g ∈ L−1, then [f, g]R = 0
so {f, g}L∗

R
◦L = 0. On the other hand, {f◦L, g◦L}T∗Σ̃ = 0 since functions

of X alone, or a function of Y and a function of x, or a function of Y and a
function of X alone Poisson commute.

(2) If f, g ∈ L−1 or f, g ∈ L+1, then [f, g]R ∈ L±2. Therefore,

{f, g}L∗
R
◦L = −〈〈L, [f, g]R〉〉 = 0 (3.22)

since L lies in L−1+L0+L+1. On the other hand, f◦L and g◦L are either

functions of Y or x alone. In either case, they Poisson commute on T ∗Σ̃.
(3) If f ∈ L0 and g ∈ L+1, then it suffices to assume that g = er for some

r ∈ ΨΨΨ. In this case,

{f, g}L∗
R
◦L = −〈L, [f, er]R〉 = −〈r, f〉 × 〈〈L, er〉〉 (3.23)

= −〈r, f〉 ×
∑

σ∈GE s.t. ρ(σ|
F
)=r

exp(bσ 〈σ̂, x〉).

On the other hand,

f◦L = 〈X,Φ∗f〉 , (3.24)

g◦L =
∑

σ∈GE s.t. ρ(σ|
F
)=r

exp(bσ 〈σ̂, x〉), (3.25)

so the Poisson bracket of these functions is

{f◦L, g◦L}T∗Σ̃ = −
∑

σ∈GE s.t. ρ(σ|
F
)=r

exp(bσ 〈σ̂, x〉)× bσ 〈σ̂,Φ∗f〉 (3.26)

Because ρ is a bijection of BF with ΨΨΨ, there is a unique τ ∈ BF such
that ρ(τ) = r. Therefore, due to the way that ρ is extended to GF , the
σ’s involved in the above summations all satisfy σ|F = τ or τ̄ . Therefore,
〈σ̂, x〉 = 〈τ̂ , x〉 for all σ ∈ GE such that ρ(σ|F ) = r.

This fact about the σ’s also implies that 〈σ̂,Φ∗f〉 =
〈
Φ(τ̂ |Vo,F

), f
〉
. Since

τ̂ will only appear when it acts on Vo,F , the notation |Vo,F
will be sup-

pressed.
Therefore, if the right-hand sides of equations (3.23) and (3.26) are

equated for all f ∈ L0, then one concludes that
∑

σ∈GE s.t. ρ(σ|
F
)=r

exp(bσ 〈τ̂ , x〉)× [bσ Φ(τ̂)− r] = 0. (3.27)

The functions u 7→ eau, ebu are linearly independent if a 6= b. If the bσ’s in
the above sum are not constant, then the sum in equation (3.27) contains
two linearly independent functions. Therefore, the coefficients on these two
functions must vanish. But this forces Φ(τ̂) to equal two different multiples
of r. Absurd. Therefore, the bσ’s in the sum must be constant. This implies
that bσ is determined by r alone, or equivalently, by τ alone.

As cases (1—3) are the only independent cases to be considered, one concludes
that if L is a Poisson map, then there are integers bτ , τ ∈ BF , such that the integers
bσ, σ ∈ GE , satisfy

bσ = bτ where σ|F = τ or τ̄ . (3.28)

Moreover, equation (3.27) implies that if τ ∈ BF and ρ(τ) = r, then

Φ(τ̂) = b−1
τ r. (3.29)
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Summing over τ ∈ GF , and using the fact that ρ is a bijection of BF and ΨΨΨ,
∑

τ∈GF

Φ(τ̂) =
∑

τ∈BF

Φ(nτ τ̂) =
∑

r∈Ψ

nτ b
−1
τ r, (where ρ(τ) = r). (3.30)

The left-hand side vanishes because
∑

τ∈GF
τ̂ |Vo,F

= 0. Therefore
∑

r∈Ψ

nτ b
−1
τ r = 0, (3.31)

while the unique linear dependence relation in equation (3.10) implies that there
must be a constant c such that n−1

τ bτωr = c for all r ∈ Ψ. The constant c is a
positive integer, or one-half such, since bτ and ωr are positive integers and nτ = 1
or 2. This implies part (1) of the Theorem.

The equation that Φ must satisfy is, for all τ ∈ BF ,

Φ(τ̂) =
1

cnτ
× ωrr where r = ρ(τ). (3.32)

Comparison with equation (3.11) shows that Φ = c−1×φρ, which is part (2) of the
Theorem.

The claim that L2 = L + L1 is an embedding is obvious.
�

Remark 3.2. Theorem (3.2) exploits the naturality of the constructions. In cases
where the group A is not of finite index in UF , one encounters the problem that
there is no obvious Lax map. This is what makes question D difficult.

Remark 3.3. Condition (1) implies that bσ depends only on σ|F . Condition (2)
implies that 2c is divisible by all ωr, hence by their lcm, ω. Therefore, there is a
unique choice of Φ and integers bσ if one insists that c be as small as possible and
the bσ be even. In case F is totally real, condition (1) implies that c is divisible
by ω = lcm(ωr : r ∈ Ψ). When c is chosen to be 2ω – so that bσ = 2ω/ωr is even
–, condition (2) implies that Φ( σ̂|F ) = 1

2wrr, where wr = ωr/ω, and ρ(σ|F ) = r.

This condition is stated in [11, Lemma 7], except for the factor of 1
2 in Φ.3 This

discrepancy is due to the choice of a slightly different Poisson structure in [11,
equation (9-10)]. With these choices, the Hamiltonian H in equation (3.16) is
equal to that in [11, equation 15] when E = F is totally real. In particular (c.f.
equation 3.16),

Q = φ∗
ρ · κ · φρ. (3.33)

In the event that F has no real embeddings, this smallest choice is c = ω and
bσ = 2ω/ωr; in other events, the solution is somewhat more involved to state, as
it depends on the bijection ρ (see tables 2–4 in section 4.1.3 for examples). It is
possible to state

Proposition 3.1. Let r be the number of real embeddings of F , and 2c the number
of non-real embeddings. If the Hamiltonian H is fibre-wise quadratic, then table (1)
is true. In particular, if r > 4 and c > 0, then none of the Hamiltonians H are
fibre-wise quadratic.

Proof. From equation (3.16), it is clear that H is fibre-wise quadratic iff bσ = 2 for
all σ. Since, for all roots r, ωr = nτ c/2 where τ = σ|F and ρ(τ) = r, one has

τ ∈ Gc
F : τ ∈ Gr

F :

ωr = c ωr = c/2.

3The coefficients bσ in [11] are one-half those in the present paper.
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This shows that each weight is 1 or 2. If c = 0, then c = 2 and ωr = 1 for all roots.
If r = 0, then c = 1 and ωr = 1 for all roots. If r, c > 0, then c = 2 and ΨΨΨ has r

roots with weight 1 and c roots with weight 2. Inspection of the root systems in
figures (8–9) completes the proof. �

3.6. Quotients of the Lax Representations.

Lemma 3.3. There is a natural action of ∆ = U+
F ⋆ OF—which factors through

U+
F —on L∗

R such that the map defined in equation (3.13) is ∆-equivariant, hence
induces a Poisson map

T ∗Σ̃
L //

Π̃

��

L∗
R

��
T ∗Σ

L // L∗
R/U+

F .

The action of U+
F on imL ⊂ L∗

R is free and proper.

Proof. Define the action of g = (u, α) ∈ U+
F ⋆OF on L∗

R by

g · er =







|σ(u)|−bσ · er if r ∈ ΨΨΨ, ρ(σ) = r

|σ(u)|bσ · er if −r ∈ ΨΨΨ, ρ(σ) = r

er otherwise,
(3.34)

and g|L0
= 1. It is straightforward to see that L(g · P ) = g · L(P ) for all g and

P ∈ T ∗Σ̃.
Since the coefficients of er, −r ∈ ΨΨΨ, do not vanish on imL, one sees that the

action of U+
F is semi-conjugate to its action on Vo,F . Hence, it is free and proper. �

Remark 3.4. The preceding lemma implies that H and all the “spectral” integrals
of H descend, but with some additional work. The alternative Lax matrix, equation
(3.14), gives us a simple proof of this fact.

Lemma 3.4. The map defined in equation (3.14) is U+
F ⋆ OF -invariant, hence it

induces a Poisson map

T ∗Σ̃
L //

Π̃

��

L∗
R

T ∗Σ.

L

77ooooooooooooo

Consequently, if h is a Casimir of L∗, then h◦L Poisson commutes with H.

Proof. By equation (2.17), one can write

L(P ) =
∑

σ∈GE

er + Φ(X) +
1

2
×

∑

σ∈GE

γσ · e−r. (3.35)

By Lemma 2.4, each function γσ is U+
F -invariant, hence U+

F ⋆OF -invariant. �

3.7. Additional Integrals. A consequence of Theorem 3.2 is that the function
P 7→ Y : T ∗Σ̂ → V∗

E is a first integral of any function on L∗
R pulled-back to T ∗Σ̂

by the Lax matrix L (equation (3.13)). Unfortunately, this map is not U+
F -invariant.

However, one is able to construct a map, f, from Y which is U+
F -invariant. Naively,

one might try to define f by means of equivariance. That is the task of this section.
For each τ ∈ GF , let the subspace of VE spanned by {σ : σ|F = τ} be denoted

by Vτ,E . One may define

Yτ =
∑

σ|F=τ

Yσ · σ̂, (3.36)
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for all τ ∈ GF . Since Yσ̄ = Ȳσ for all σ, it is clear that complex conjugation induces
a real linear isomorphism between V∗

τ,E and V∗
τ̄ ,E . This linear isomorphism maps

Yτ → Yτ̄ , which implies that as real vector spaces

V∗
E
∼=

∑

τ∈BF

V∗
τ,E . (3.37)

In the sequel, this natural isomorphism is understood.
The group U+

F acts on V∗
E by u · σ̂ = σ(u)−1 · σ̂. Since u ∈ F , this action is

(c.f. equation 2.16)

u · Y =
∑

τ∈BF

τ(u)−1 · Yτ . (3.38)

Lemma 3.5. Let

V∗
E,0 = {Y ∈ V∗

E : ∀τ ∈ BF ,Yτ 6= 0} . (3.39)

The set V∗
E,0 is U+

F -invariant and V∗
E,0/U+

F is a smooth manifold of dimension
dimV∗

E.

Proof. Inspection of equation (3.38) shows the invariance of V∗
E,0. To prove that

the action of U+
F is free and proper, define q̂ : V∗

E,0 → Vo,F /LLLF by

q̂(Y) =
∑

τ∈GF

ln |Yτ | · τ −
∑

τ∈GF

ln |Yτ | · t modLLLF , (3.40)

where

t =
1

|GF |
∑

τ∈GF

τ.

From equation (3.38), one sees that u∗|Yτ | = − ln |τ(u)|+ |Yτ |, so q̂ is U+
F -invariant,

hence it defines a continuous map q : V∗
E,0/U+

F → Vo,F /LLLF . The action of U+
F is

therefore both free and proper, since q maps cosets onto cosets. �

Define a function gτ : T ∗Σ̂ → R by

gτ (P ) = |Yτ |2 =
∑

σ|
F
=τ

|Yσ|2. (3.41)

These functions are first integrals of H (see below), but they are not U+
F -invariant.

However, their product is invariant:

k =
∏

τ∈GF

gτ =
∏

τ∈GF

∑

σ|
F
=τ

|Yσ|2. (3.42)

From k one obtains the important subspaces

U = {P ∈ T ∗Σ : k(P ) 6= 0} , Z = {P ∈ T ∗Σ : k(P ) = 0} . (3.43)

It is clear from the definition of k that Z is the union ∪τ∈GF
Zτ , where Zτ = g−1

τ (0)
(although gτ is not U+

F -invariant, its zero set is). It is also clear that U is an open
and dense analytic submanifold of T ∗Σ, Z = Σ × V∗

o,F × V∗
E,0, and that Z is an

analytic sub-variety.

Lemma 3.6. Define the map f : U → V∗
E,0/U+

F by, for all P ∈ U,

f(P ) = Y · U+
F (3.44)

where the action of U+
F is given by equation (3.38). Then f is an analytic submer-

sion.

Proof. This is clear. �
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Remark 3.5. (1) U is a union of regular Liouville tori and singular tori (see below).
The singular set Z has co-dimension equal to [E : F ]. Therefore, when F ( E,
the co-dimension is two or more. In this case, the set of regular Liouville tori is
connected. (2) The topological structure of V∗

E,0/U+
F is interesting. The map q is

a submersion whose typical fibre is diffeomorphic to the Cartesian product of the
unit spheres in V∗

τ,E , for τ ∈ BF , with the positive real numbers. The bundle is

generally non-trivial, since the action of U+
F twists the fibres. Indeed, one sees that

the map q× k is a proper submersion with

∏

τ∈BF
Sdτ−1 � � // V∗

E,0/U+
F

q×k // // Vo,F /LLLF × R+ (3.45)

where we identify k with a function defined on V∗
E and dτ = [E : F ]. This also

exhibits V∗
E,0/U+

F as a compact manifold times R+. The compact manifold is

something like a torus bundle over a torus. In particular, the ends of V∗
E,0/U+

F

are quite uncomplicated. (3) Let us relate the preceding discussion to that in the
introduction, c.f. diagram (1.5) and figure 1. Let ∼ be the equivalence relation on
V∗

E that is generated by defining Y ∼ 0 if Yτ = 0 for some τ ∈ BF and Y ∼ u · Y
for all u ∈ U+

F . The topological space V∗
E/ ∼ is a quotient of V∗

E/U+
F where

one collapses the set {Y :
∏

τ∈BF
Yτ = 0} to a point. We have the following

commutative diagram:

Û
Y //

in
cl
.

yyssssssssssss

/U+
F

��

V∗
E,0

/U+
F

��

in
cl
.

yysssssssssss

T ∗Σ̂

/U+
F

��

f̂=Y // V∗
E

/U+
F

��

U
f //

in
cl
.

yysssssssssssss
V∗

E,0/U+
F

%%KKKKKKKKKK

incl.

%%KKKKKKKKKK

in
cl
.

yyssssssssss

T ∗Σ //

f

44V∗
E/U+

F

collapse // V∗
E/ ∼

(3.46)

in (1.5) and f̂ = Y is the momentum-map of the torus VE/NE acting on T ∗Σ̂.
One can see that V∗

E,0/U+
F is the complement of the coset of 0 in V∗

E/ ∼ and
that the first-integral map f is the natural extension of the map f from U to T ∗Σ.
From the diagram (3.45), one can see that V∗

E/ ∼ is homeomorphic to the cone
on R+\V∗

E,0/U+
F , where R+ acts by scalar multiplication. The diagram (3.45) also

shows that when F = E, the fibres of q × k are disconnected, so that V∗
E/ ∼ is

a union of disjoint cones pinched at the cone point as in figure (1). When F is a
proper subfield of E, then the fibres of q× k are connected and V∗

E/ ∼ is a cone on
a connected space. (4) There are globally-defined, U+

F -invariant functions on V∗
E .

The most natural construction is a generalisation of the quadratic Casimir from the
3-dimensional Sol manifolds and the Casimir in the totally real case [6, 11]. Each
copy of Vτ,E may be naturally identified with VE/F ,

4 and similarly for the dual
spaces. One can therefore define the map

k(Y) =
∏

τ∈GF

Yτ , k : V∗
E → Sd(VE/F ) (3.47)

4Note that VE/E = R.
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where d = [E : F ] and S∗(VE/F ) is the vector space of polynomial functions on the

vector space VE/F . It is clear that k is U+
F invariant. A simple computation shows

that q× k is a submersion on V∗
E,0/U+

F . (5) One might want to use the map

Y 7→
∑

τ∈BF

Yτ

|Yτ |
, V∗

E,0 →
∏

τ∈BF

Sdτ−1 ⊂
∑

τ∈BF

V∗
τ,E

to “split” the fibre bundle in (3.45). In general, however, the map induced by equiv-
ariance is not well-defined. Rather, to obtain a well-defined map by equivariance,
the set Uτ =

{
τ(u)/|τ(u)| : u ∈ U+

F

}
needs to be finite for all τ ∈ GF ; if one of

these sets is not finite, then the co-domain of the induced map is not a manifold; if
all the sets are finite, then the induced map’s co-domain is a product of lens spaces
so it does not split the fibre bundle, but it does split a suitable finite covering.
Finiteness fails in many important cases: if F possesses a unit of infinite order on
the unit circle, for example. (6) The map f induces a sub-algebra of C∞(T ∗Σ) by

R =
{
f∗h : h ∈ C∞(V∗

E,0/U+
F ), h has compact support

}
. (3.48)

The sub-algebra R is the substitute on T ∗Σ for the momentum map P 7→ Y on the
level of algebras of functions.

4. Complete Integrability

Let Z∞(L∗) be the set of smooth Casimirs of L∗ with its standard Poisson
bracket. This section proves that

Theorem 4.1. Let h ∈ Z∞(L∗) be a Casimir and let L : T ∗Σ → L∗
R be the Lax

matrix of equation (3.13)

L(P ) =
∑

σ∈GE

er + Φ(X) +
∑

σ∈GE

|Yσ|bσ · exp(bσ · 〈σ̂, x〉) · e−r,

where Φ : V∗
o,F → h∗ satisfies the conclusions of Theorem (3.2). Then, the following

are true

(1) H := L∗h is a completely integrable Hamiltonian with smooth integrals;
(2) the algebras L := L∗Z∞(L∗) and R form a dual pair;
(3) the singular set is an analytic variety.

Proof. (1-2) Let R̂ = Π̂∗R be the pullback of R to T ∗Σ̂. By the construction of R,

R̂ ⊂ Y∗C∞(V∗
E) and their functional dimension is equal on Û.

A Casimir h of L∗ is, a fortiori, invariant under the co-adjoint action of L0.
Therefore, h|L∗

−1+L∗
0+L∗

+1
must be functionally dependent on the co-adjoint invari-

ants of L0, er · e−r, r ∈ ΨΨΨ and x ∈ L0. From the formula for L, the function
H = L∗h must therefore be a function of γσ = |Yσ|bσ exp(bσ 〈σ̂, x〉) and X. These

functions, and therefore H, are involution with R̂.
This proves that L and R are commuting algebras of functions whose sum L+ R

is also abelian.
LetR ⊂ e+L∗

0+L∗
+1 be the set of regular points of the algebra Z

∞(L∗) restricted
to the subspace e+L∗

0+L∗
+1, where e =

∑

r∈ΨΨΨ er. This regular-point set is an open
and dense real-analytic subset of e+L∗

0+L∗
+1. Since L|U is an analytic submersion

whose image is open in e+L∗
0 +L∗

+1, L
−1(R) is an open and dense analytic subset

of U.
Therefore, for all P ∈ L−1(R),

dimdLP = rankΨ = dimVo,F , dimdRP = dimVE ,

while it is clear that
dLP ∩ dRP = {0}.
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Since dimΣ = dimVo,F + dimVE , this proves (1-2).

(3) The singular set of R + L is the union of L−1(Rc) and Z = k−1(0). Both are
real-analytic subsets of T ∗Σ, hence their union is, too.

�

Theorem 1. Let A be maximal in the sense of definition 1. This implies that Zb

is an irreducible A-module. Let T ∈ GL(b;C) be a matrix that conjugates A to
a subgroup of the set of diagonal matrices in GL(b;C) and let Γ = T−1AT and
M = T−1Zb. Let F be the extension field of Q that is generated by the (1, 1)-
entries of γ ∈ Γ; since A is maximal, F/Q has degree b. The map δ, defined for
each γ ∈ Γ by,

δ(γ) := γ11 δ : Γ → UF

is a group homomorphism. Indeed, the maps δj(γ) = γjj are group homomorphisms
into the group of units of the j-th conjugate of F .

It is clear that the first column of the matrix T can be supposed to have entries
in OF and the j-th column of T can be supposed to be the j-th conjugate of the
first column. It is claimed that detT = q ·d where q is a non-zero integer q and d is
the different of F . By definition, d = detU where the entries of the first column of
U form a Z-basis of OF and the remaining columns are the conjugates of the first
column. Let v be the first column of T . If the entries of v do not rationally span F ,
then there is a non-zero t ∈ Zb such that 〈t, v〉 = 0. One can take the conjugates
of this linear equation and conclude that t is orthogonal to each column of T and
therefore t = 0. Absurd. One concludes that the entries of v generate a finite index
subgroup of OF . The index of this subgroup is detT/d. This proves the claim.
Therefore, for all m ∈ M , the j-th entry of qd×m lies in the j-th conjugate of OF .
Define the map δ for each m ∈ M by

δ(m) := qd ·m1 δ : M → OF ,

where m1 is the first entry of m. It is clear that δ is a morphism of modules that
faithfully intertwines the representation of Γ on M with that of δ(Γ) on δ(M); or,

δ extends to a group embedding M ⋆ Γ
� � // OF ⋆ UF whence there is a group

embedding Zb ⋆ A
� � // OF ⋆ UF .

Because Zb is an irreducible A-module, the degree of F/Q is b so Zb is em-
bedded as a finite index subgroup of OF . Since A is maximal, A is embedded as
a torsion-free, finite-index subgroup of UF . Since δ(Γ) is torsion-free, there is a
choice of U+

F such that δ(Γ) ⊂ U+
F . Therefore, one has obtained an embedding

Zb ⋆ A
� � // OF ⋆ U+

F which is of finite index. This proves that ΣA is a finite

covering of the manifold Σ constructed in lemma (2.3) with E = F .
The proof of the theorem follows now by virtue of theorem 4.1 and the fact that

the covering map T ∗ΣA → T ∗Σ is a local symplectomorphism. �

4.1. Examples. Let us illustrate the results of this section with two examples.

4.1.1. A non-normal cubic extension. To illustrate the construction behind Theo-
rem 1 take the case where A⊳GL(3;Z) is the group generated by

A1 =





0 1 0
3 0 1
1 2 0



 , A2 =





−2 1 0
3 −2 1
1 2 −2



 . (4.1)
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A is conjugate by a T ∈ SL(3;R) to the group Γ generated by

B1 =





α1 0 0
0 α2 0
0 0 α3



 , B2 =





α4 0 0
0 α5 0
0 0 α6



 , (4.2)

where αj for j = 1, 2, 3 are the roots of the cubic f(x) = x3−5x−1 and αj = αj−3−2
for j = 4, 5, 6. For definiteness, one can take T to be the matrix

T =





4 3α3 + α2 3α3 + α2

6 5α2 + α1 5α2
2 + α2

1

1 α3 α2
3



 , (4.3)

whence detT =
√
473, which is the different of f and the number field F = Q[α1].

Let M = T−1(Z3) and ∆ = M ⋆ Γ so that T ∗ΣA = T ∗(∆\R3 × R2).
To define the Lax matrix in (3.14), it is convenient to embed A by

A
log ◦Ad

T−1 // h, A2
i+1

� //





log |α3i+1|
log |α3i+2|

log |α3i+3|





for i = 0, 1, where h ∼= R2 is the Cartan subalgebra of SL(3;R) consisting of trace
zero diagonal 3× 3 matrices. This embeds A as a lattice in h. One can define the
coordinates for P = (Y, y,X, x) ∈ T ∗Σ̃ = T ∗R3 × T ∗h and thereby obtain the Lax
matrix

L(P ) =





0 0 λ−1

1 0 0
0 1 0



+





X1 0 0
0 X2 0
0 0 X3



+
1

2
×





0 δ1 0
0 0 δ2
λδ3 0 0



 (4.4)

where δi = |Yi|2 exp(2xi − 2xi+1) and
∑

Xi =
∑

xi = 0. One obtains the two
Poisson-commuting functions

H =
1

2
× Tr(L2) =

1

2
×
(
X2
1 + X2

2 + X2
3

)
+

1

2
× (δ1 + δ2 + δ3) (4.5)

F =
1

3
× Tr(L3) ≡ 1

3
×
(
X3
1 + X3

2 + X3
3

)
− 1

2
× (δ1X3 + δ2X1 + δ3X2) (4.6)

that are in involution with Y.
One may permute the indices i; it is clear that a cyclic permutation yields the

sameH and it is not difficult to see that transpositions yield equivalent hamiltonians
(remark 7.2).

4.1.2. A non-normal cubic extension and Z6. To illustrate the construction behind
Theorem 1 take the case where A⊳GL(6;Z) is the group generated by

A1 =











0 2 −4 0 1 −2
0 0 0 −2 2 1
−1 0 0 −1 0 1
0 0 −1 0 0 −2
0 1 −1 0 0 1
0 0 0 −1 1 0











, A2 =











−2 2 −4 0 1 −2
0 −2 0 −2 2 1
−1 0 −2 −1 0 1
0 0 −1 −2 0 −2
0 1 −1 0 −2 1
0 0 0 −1 1 −2











.

(4.7)

A is conjugate by a T ∈ SL(6;R) to the group Γ generated by

B1 =





α1I2 0 0
0 α2I2 0
0 0 α3I2



 , B2 =





α4I2 0 0
0 α5I2 0
0 0 α6I2



 , (4.8)

where I2 is the 2×2 identity matrix and αj for j = 1, 2, 3 are the roots of the cubic
f(x) = x3− 5x− 1 and αj = αj−3− 2 for j = 4, 5, 6. One notes that the matrix A1
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is the matrix of the root α1 acting on the integers of OE , where E = Q[α1,
√
473]

is the normal closure of the field F of the previous example. There is not a simple
expression for such a matrix T , because unlike the previous example A1 is not
conjugate over Z to its companion matrix. In all events, let M = T−1(Z6) and
∆ = M ⋆ Γ so that T ∗ΣA = T ∗(∆\R6 × R2).

To define the Lax matrix in (3.14), it is convenient to embed A by

A
log ◦Ad

T−1 // h, Ai+1
� //





log |α3i+1|I2
log |α3i+2|I2

log |α3i+3|I2





consisting of trace zero diagonal 6× 6 matrices. This embeds A as a lattice in the
subspace h2 ⊂ h consisting of matrices which are of the form B ⊗ I2 for a 3 × 3
diagonal, trace zero matrix B. One can define the coordinates for P = (Y, y,X, x) ∈
T ∗Σ̃ = T ∗R6 × T ∗h2 and thereby obtain the Lax matrix

L(P ) =





0 0 λ−1I2
I2 0 0
0 I2 0



+





X1I2 0 0
0 X2I2 0
0 0 X3I2



+
1

2
×





0 δ1I2 0
0 0 δ2I2

λδ3I2 0 0





(4.9)

where δi = |Yi|2 exp(2xi − 2xi+1) and
∑

Xi =
∑

xi = 0. One obtains the two
Poisson-commuting functions

H =
1

4
× Tr(L2) =

1

2
×

(
X2
1 + X2

2 + X2
3

)
+

1

2
× (δ1 + δ2 + δ3) (4.10)

F =
1

6
× Tr(L3) ≡ 1

3
×

(
X3
1 + X3

2 + X3
3

)
− 1

2
× (δ1X3 + δ2X1 + δ3X2) (4.11)

that are in involution with Y (≡ indicates equality modulo functions of Y).

4.1.3. A non-normal quartic extension. To illustrate the construction behind The-
orem 1 take the case where A⊳GL(4;Z) is the group generated by

A1 =







1 −1 −1 1
1 0 0 1
0 −1 0 0
0 1 0 1






, A2 =







0 1 1 1
0 1 0 1
0 0 0 −1
1 0 −1 1






. (4.12)

A is conjugate by a T ∈ SL(4;R) to the group Γ generated by

B1 = diag(α1, . . . , α4), B2 = diag(α5, . . . , α8), (4.13)

where αj for j = 1, . . . , 4 are the roots of the palindromic quartic f(x) = x4 −
2x3 + x2 − 2x − 1 and αj = α3

j−4 − α2
j−4 − 1 for j = 5, . . . , 8. The roots αj equal

1

2
×

(

1 + s
√
2 + t

√

(1 + s
√
2)2 − 4

)

where s, t ∈ {±1}, j = 1, . . . , 4. This gives

two real reciprocal roots that are approximately 1.883 and 0.531 and two conjugate
complex roots on the unit circle that are approximately 0.207 ± 0.978

√
−1. Since

f is Q-irreducible, the complex roots are not roots of unity, which also implies that
the largest positive root is a Salem number. One notes that the matrix A1 is the
matrix of the root α1 acting on the integers of OF , where F = Q[α1].

As with example 4.1.1, one can compute a straightforward representation of T






−1 α4 − α3 + α2 − 2α1 α2
4 − α2

3 + α2
2 − 2α2

1 α3
4 − α3

3 + α3
2 − 2α3

1

0 α4 − α3 + α2 − α1 α2
4 − α2

3 + α2
2 − α2

1 α3
4 − α3

3 + α3
2 − α3

1

1 −α4 + α3 + α1 −α2
4 + α2

3 + α2
1 −α3

4 + α3
3 + α3

1

2 α3 + α1 α2
3 + α2

1 α3
3 + α3

1







(4.14)
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and one can verify that detT = −8
√
−7, which is the different of F . In all events,

let M = T−1(Z4) and ∆ = M ⋆ Γ so that T ∗ΣA = T ∗(∆\R4 × R2).
To define a Lax matrix as in (3.14), it is convenient to embed A into the Cartan

subalgebra h ∼= R2 of the real symplectic group of 4× 4 matrices

h = {diag(a, b,−a,−b) : a, b ∈ R}
by the embedding

A
log ◦Ad

T−1 // h, Ai+1
� // diag(log |α4i+1|, log |α4i+2|, log |α4i+4|, log |α4i+3|)

for i = 0, 1. To make this an embedding, one must stipulate that the roots αj and
α5−j must be reciprocals for j = 1, 2; it is also supposed that α1 (resp. α2) has
positive imaginary part (resp. is the largest real root of f). This embeds A as a

lattice in h. One can define the coordinates for P = (Y, y,X, x) ∈ T ∗Σ̃ = T ∗R4×T ∗h
and thereby obtain the Lax matrix L(P )







0 1 0 0
0 0 0 1

λ−1 0 0 0
0 0 −1 0






+

Φ(X)
︷ ︸︸ ︷






a1X1 0 0 0
0 a2X2 0 0
0 0 −a1X1 0
0 0 0 −a2X2






+
1

2
×







0 0 λδ3 0
δ1 0 0 0
0 0 0 −δ1
0 δ2 0 0







(4.15)
where δi, ai are determined in Table 2. One obtains the two Poisson-commuting
functions

H =
1

4
× Tr(L2) =

1

2
×
(
a21X

2
1 + a22X

2
2

)
+

1

2
× (δ1 +

1

2
δ2 +

1

2
δ3) (4.16)

F = detL ≡ δ2δ3
4

+
δ21
4

− δ1a1a2X1X2 +
a22X

2
2δ3
2

+
a21X

2
1δ2
2

+ a21a
2
2X

2
1X

2
2 (4.17)

that are in involution with Y (≡ indicates equality modulo functions of Y).
To explain the following choices for the functions δi, one defines the embeddings

of the number field F by τi(α1) = αi, so that BF = {τ1, τ2, τ3} and τ4 = τ̄1.
A bijection ρ : BF → ΨΨΨ is identified as a permutation s of {1, 2, 3} under the
convention that ρ(τi) = rs(j). Only three choices are listed since the remaining
three are obtained by permuting Y2 and Y3 in the formulae below (these unlisted
choices are also conjugate to the listed choices, since this permutation induces an
analytic symplectomorphism of T ∗Σ).

c ρ bτ a1, a2 δ1 δ2 δ3

2 (1) 2, 2, 2 1, 1 2|Y1|2e2x1−2x2 |Y2|2e4x2 |Y3|2e−4x1

4 (2 1) 8, 2, 4 1
2 ,

1
4 |Y2|2e4x1−8x2 2|Y1|8e16x2 |Y3|4e−8x1

4 (3 1) 8, 4, 2 1
4 ,

1
2 |Y3|2e8x1−4x2 |Y2|4e8x2 2|Y1|8e−16x1

Table 2. Choices for the Lax matrix L; yi (Yi) is a coordinate on
the αi-eigenspace with y1 = ȳ4 (Y1 = Ȳ4). See Theorem 3.2.

With these choices of δi, (4.15) gives a Lax representation of the hamiltonian
vector field of H (4.16) with the integral F (4.17). Although fibrewise convex for
all choices, the hamiltonian H is only fibre-wise quadratic for the first choice.

Additional Lax Representations. One can define additional Lax representations with
the aid of the remaining rank 2 affine Kac-Moody algebras.
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A
(1)
2 . Embed A into the Cartan subalgebra h ∼= R2 of SL(3;R) via

A
log ◦Ad

T−1 // h, Ai+1
� // diag(2 log |α4i+1|, log |α4i+2|, log |α4i+3|)

where the roots αj are labelled as above. This embeds A as a lattice in h. One can

define the coordinates for P = (Y, y,X, x) ∈ T ∗Σ̃ = T ∗R4×T ∗h and thereby obtain
the Lax matrix

L(P ) =





0 0 λ−1

1 0 0
0 1 0



+





a1X1 0 0
0 a2X2 0
0 0 a3X3



+
1

2
×





0 δ1 0
0 0 δ2
λδ3 0 0



 (4.18)

where
∑

aiXi =
∑

a−1
i xi = 0 and δi is defined below. One obtains the two Poisson-

commuting functions H = 1
2 × Tr(L2) and F = detL where

H = a21X
2
1 + a1X1a2X2 + a22X

2
2 +

1

2
× (δ1 + δ2 + δ3) (4.19)

F ≡ −a1X1a
2
2X

2
2 − a21X

2
1a2X2 +

1

2
a1X1 (δ1 − δ2) +

1

2
a2X2 (δ1 − δ3) , (4.20)

where the functions δi are determined in table 3, following the conventions in table
2.

c ρ bτ a1, a2 δ1 δ2 δ3

2 (1) 2, 2, 4 1
2 , 1 2|Y1|2e2x2−4x1 |Y2|2e−4x2−4x1 |Y3|4e2x2+8x1

2 (1 2) 2, 4, 2 1, 1
2 |Y2|4e4x2−2x1 2|Y1|2e−8x2−2x1 |Y3|2e4x2+4x1

2 (1 3) 4, 2, 2 1, 1 |Y3|2e2x2−2x1 |Y2|2e−4x2−2x1 2|Y1|4e2x2+4x1

Table 3. Choices for the Lax matrix L; yi (Yi) is a coordinate on
the αi-eigenspace with y1 = ȳ4 (Y1 = Ȳ4). See Theorem 3.2.

G
(1)
2 . One proceeds as above and obtains the hamiltonian

H =
1

24
×
(
a21X

2
1 + 3a1X1a2X2 + 3a22X

2
2

)
+ 16× (3δ1 + δ2 + δ3) (4.21)

where δi is defined by

c ρ bτ a1, a2 δ1 δ2 δ3

12 (1) 8, 6, 12 1
4 ,

1
3 2|Y1|8e16x1−6x2 |Y2|6 e12x2−24x1 |Y3|12e−6x2

12 (3 2) 8, 12, 6 1
4 ,

1
3 2|Y1|8e16x1−12x2 |Y3|6 e24x2−24x1 |Y2|12e−12x2

24 (3 2 1) 24, 4, 6 1
3 ,

1
12 |Y3|6e48x1−4x2 2|Y1|24e8x2−72x1 |Y2|4 e−4x2

12 (2 1) 6, 2, 6 1, 1
3 |Y2|2e12x1−2x2 2|Y1|6 e4x2−18x1 |Y3|6 e−2x2

12 (2 3 1) 6, 6, 2 1
3 , 1 |Y2|6e12x1−6x2 |Y3|2 e12x2−18x1 2|Y1|6 e−6x2

24 (3 1) 24, 6, 4 1
2 ,

1
3 |Y3|4e48x1−6x2 |Y2|6 e12x2−72x1 2|Y1|24e−6x2

Table 4. Choices for the Lax matrix L; yi (Yi) is a coordinate on
the αi-eigenspace with y1 = ȳ4 (Y1 = Ȳ4) and xi is the coordinate
on h induced by the simple coroots [17, p. 346].
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5. The singular set and gradient flows

Two prefatory comments: first, the fibre bundle structure

VE/OE
� � // Σ

p// // Vo,F /LLLF

induces the sub-bundle V = ker dp ⊂ TΣ and its annihilator V⊥ ⊂ T ∗Σ. The
sub-bundle V⊥ is naturally isomorphic to Σ×V∗

o,F . Second, recall that the stable
manifold of a point p is the set of points whose orbits converge to that of p’s as
time goes to ∞; the unstable manifold is defined symmetrically as time goes to −∞;
the stable and unstable manifolds of a set are the union of the stable and unstable
manifolds of each point in the set. In this section it is shown that

Theorem 5.1. V⊥ is an invariant set for the Hamiltonian flow of H (equation
3.16). The stable and unstable manifolds of V⊥, W±(V⊥), coincide and

W±(V⊥) = Z (= k−1(0)). (5.1)

Before proceeding with the proof, let us explain why theorem 5.1 is natural from
the perspective of Bogoyavlenskij-Toda lattices. It is a well-known result that the
open Bogoyavlenskij-Toda lattices undergo scattering: the particles interact over
some time interval and then separate and proceed off to infinity. The net result of
the interaction is that the momenta of the particles may be permuted from t = −∞
to t = ∞; in terms of the Lax matrix, L(−∞) and L(∞) are diagonal matrices
which differ by the action of some element in the Weyl group. Since the open
Bogoyavlenskij-Toda lattices are obtained from the periodic Bogoyavlenskij-Toda
lattices by turning off the potential term associated to the root ηηη, it is plausible
that when other potential terms are turned off, the system should still exhibit such
scattering behaviour. To confirm this, one must develop the double-bracket or
gradient representation of these systems.

5.1. Double-bracket and gradient representations. Let us recall the construc-
tions of [9], where it is demonstrated that the open Bogoyavlenskij-Toda lattices
may be viewed as gradient flows. Let g be a semi-simple Lie algebra with Cartan-
Killing form κ = 〈〈, 〉〉. For x ∈ g∗ let Ox denote the co-adjoint orbit of x, let gx be
the stabiliser algebra of x and let g⊥x be the κ-orthogonal complement of gx. The
map v 7→ advx is a linear isomorphism of g⊥x with TxOx.

Definition 5.1. The normal metric, n, on Ox is defined at TxOx by

∀u, v ∈ g⊥x : n(adux, advx) = 〈〈u, v〉〉 (5.2)

Lemma 5.2. If H ∈ C∞(g∗), then the gradient vector field of H|Ox at x is

n

∇H(x) = −[x, [x, y]] ∈ TxOx (5.3)

where y = ∇H(x) is the κ-gradient of H.

For a proof, see [9].

5.2. Bogoyavlenskij-Toda lattices and double brackets. Let us specialise the
construction of the previous section. The semi-simple Lie algebra is the loop algebra
L or its twisted counterpart of section 3.1. Let ΨΨΨ0 ( ΨΨΨ be a proper subset obtained
by removing a single root from ΨΨΨ. Let

x = h+
∑

r∈ΨΨΨ0

xr(er + e−r) ∈ L∗, m =
∑

r∈ΨΨΨ0

xr(er − e−r), X(x) = [x,m], (5.4)

where h ∈ h. The vector fieldX is a Bogoyavlenskij-Toda-like vector field associated
to the splitting of 0L ⊂ L as in section 3.2.
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Lemma 5.3. X is a gradient vector field relative to the normal metric, hence X
is tangent to Ox.

Proof. It suffices to determine a y ∈ h such that X =
n

∇H where H(x) = 〈〈x, y〉〉.
To do so, it suffices to determine y such that m = −[x, y]. This reduces to the
solubility of the equations

∀r ∈ ΨΨΨ : xr = xr 〈r, y〉 . (5.5)

Since at least one of the xr vanishes, and any subset of ΨΨΨ of cardinality #ΨΨΨ − 1
restricts to a basis of h∗, there is always a solution to (5.5). �

The vector field X is equivalent to the differential equations

− ḣ =
∑

r∈ΨΨΨ0

2x2
r hr, and ∀r ∈ ΨΨΨ : ẋr = xr 〈r, h〉 , (5.6)

where hr = [er, e−r]. In particular, X is tangent to xr = 0 for any r. It is also clear
that X vanishes at x iff

∀s ∈ ΨΨΨ : xs 〈s, h〉 = 0 and
∑

r∈ΨΨΨ0

2x2
r 〈〈s, r〉〉 = 0, (5.7)

where the identity 〈s, hr〉 = 〈〈s, r〉〉 has been used. Since the matrix [〈〈s, r〉〉]r,s∈ΨΨΨ0

has full rank, the second part of (5.7) implies that xr = 0 for all r ∈ ΨΨΨ0 and
therefore for all r ∈ ΨΨΨ. This proves that

Lemma 5.4. X vanishes at x iff x ∈ h.

It remains to prove that all orbits ofX limit onto h. Since Ḣ = 〈〈y,−[x, [x, y]]〉〉 =
〈〈adyx, adyx〉〉, and adyx = −∑

r∈ΨΨΨ xr 〈r, y〉 (er−e−r) one concludes from (5.5)that

Ḣ = −2
∑

r∈ΨΨΨ

x2
r ≤ 0 (5.8)

with equality iff X = 0. Thus, the ω-limit set of every point x lies in h, hence Ox∩h.
The latter is a finite set and since X is a gradient vector field on Ox, the ω-limit
set is a single point. Let h0 ∈ Ox ∩ h be this point and let ΨΨΨ1 = {r : xr = 0}. Let
us linearise X about h0 subject to the condition that xr = 0 for all r ∈ ΨΨΨ1:

− δḣ = 0, and ∀r 6∈ ΨΨΨ1 : δẋr = δxr 〈r, h0〉 , (5.9)

where δx, δh denote variations. It is clear that a necessary condition for stability of
h0 is that 〈r, h0〉 ≤ 0 for all r 6∈ ΨΨΨ1. A simple argument involving the transitivity
of the action of the Weyl group on the Weyl chambers, shows that such an h0 must
exist. This proves

Lemma 5.5. For each x of the form in equation (5.4), the ω-limit set of x under

the gradient flow of X =
n

∇H is a point h0 ∈ Ox ∩ h that satisfies 〈r, h0〉 ≤ 0 for
all r ∈ ΨΨΨ1.

A similar statement is true for the α-limit set, too. It should be observed that
while h contains the ω-limit set of every point x, h is not a normally hyperbolic
manifold. One can see this from (5.9): when 〈h0, r〉 = 0, one loses hyperbolicity.

Theorem 5.1. For each τ ∈ GF the Hamiltonian vector field of H in (3.16), when
restricted to the invariant set g−1

τ (0) (equation 3.41), is semi-conjugate to a vector
field of the form of X in (5.4). The semi-conjugacy is provided by the Lax repre-
sentation in equation (3.15). Lemma 5.5 implies that the ω-limit set of a point P ∈
g−1
τ (0) lies in V⊥. Similarly for the α-limit set of P . Since k−1(0) = ∪τ∈GF

g−1
τ (0),

this proves the theorem. �
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6. Uniqueness up to Energy-Preserving Topological Conjugacy

6.1. Marked Homology Spectrum of a Flow. Two flows φ : M × R → M
and ϕ : N × R → N are topologically conjugate if there is a homeomorphism
h : M → N such that hφt = ϕth for all t ∈ R. Let Pφ be the set of periodic
points of the flow φ. For each periodic orbit γ of φ, let the homology class of γ be
denoted by γ̄ and its period by Period(γ). Let Pφ,γ̄,T denote the union of periodic
orbits of φ whose homology class is γ̄ and period is T . The number of connected
components of Pφ,γ̄,T is denoted by βφ,γ̄,T . The following two definitions originate
in Schwartzman’s work [28].

Definition 4. Let Mφ = {(γ̄,Period(γ), βφ,γ̄,Period(γ)) : γ ∈ Pφ}. We call Mφ

the marked homology spectrum of φ.

The marked homology spectrum is a subset of H1(M ;Z) × R × N that is an in-
variant of topological conjugacy in the following sense: if φ and ϕ are topologically
conjugate then

(h∗ × idR × idN)(Mφ) = Mϕ,

where h∗ : H1(M ;Z) → H1(N ;Z) is the obvious isomorphism.

Example 6.1. Let v ∈ Vo,F and define the flow φv : Σ× R → Σ by

φv
t (y, x) = (y, x+ tv) mod ∆. (6.1)

A point (y, x) ∈ Σ is periodic of period T for φv iff Tv = ℓ(u) for some u ∈ U+
F and

u · y = y mod NE .
The map u : VE/NE → VE/NE is a toral automorphism. The number of fixed

points of u is, up to sign, the degree of the map u − 1. The latter is det(u − 1) =
∏

σ∈GE
σ(u − 1), which is also the norm of u − 1 ∈ E. But since u − 1 ∈ F , this

norm equals NF (u− 1)[E:F ].
Thus,

Mφv =
{

(ℓ(u), T, |NF (u− 1)|[E:F ]) : ∀u ∈ U+
F & T ∈ R+ s.t. T v = ℓ(u)

}

(6.2)

Example 6.2. LetQ : V∗
o,F → Vo,F be a linear isomorphism andM = T ∗(Vo,F /LLLF ) =

V∗
o,F×Vo,F /LLLF . Let φt(X, x) = (X, x+tQ·X mod LLLF ). Clearly, η

±(X, x) = {±Q·X}
for all (X, x) ∈ M .

Let V1 = {(X, x) ∈ M : 〈Q · X,X〉 = 1} be the unit-sphere bundle, φ1 = φ|V1

and |m|Q =
√

|〈Q−1m,m〉| for all m ∈ Vo,F . The marked homology spectrum of
φ1 is easily seen to equal

Mφ1 = {(ℓ(u), |ℓ(u)|Q, 1) : u ∈ U+
F }. (6.3)

Example 6.3. The fibre-bundle structure VE/NE
� � // Σ

p// // Vo,F /LLLF allows

one to pullback the unit-sphere bundle V1 and the flow φ1 of the previous example.
Let ϕ1 be the pulled-back flow on p∗V1. The previous two examples show that the
marked homology spectrum of ϕ1 is

Mφ1 = {(ℓ(u), |ℓ(u)|Q, |NF (u− 1)|[E:F ]) : u ∈ U+
F }. (6.4)

The marked homology spectrum is especially interesting because it contains in-
formation about both the quadratic form restricted to the Dirichlet lattice, and
it contains information about the periodic points of the toral automorphisms u :
VE/NE → VE/NE for u ∈ U+

F . In [11], this extra information about the fixed
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points of the toral automorphisms was not noticed. It turns out that this informa-
tion is extremely important.

6.2. Asymptotic Homology of a Flow. Let π : M̂ → M be the universal abelian

covering of M . The flow φ is covered by a flow φ̂ : M̂ × R → M̂ . Let F ⊂ M̂ be
a fundamental domain for the group of deck transformations Deck(π). For each
p ∈ M , choose p̂ ∈ F ∩ π−1(p). For each t there is a g ∈ Deck(π) such that

φ̂t(p) ∈ g.F ; let gt(p) be one such element and let 1
t gt(p) ∈ Deck(π) ⊗Z R. Recall

that Deck(π)⊗Z R ≃ H1(M ;R).

Definition 5. Let

ηφ(p) :=
⋂

T≥0

{
1

t
gt(p) : t ≥ T

}

be the asymptotic homology of p ∈ M . Let η±φ = ηφ± where φ±
t = φ±t.

One can show that ηφ(p) is independent of the choice of representatives and if
M is compact then ηφ(p) is non-empty for all p. It is also clear that if there is a
semi-conjugacy h with h◦φ = ϕ◦h, then h∗η

±
φ (p) = η±ϕ (h(p)).

Lemma 6.1. Let H be a Hamiltonian defined by equation 3.16, and let ϕ : T ∗Σ×
R → T ∗Σ be its Hamiltonian flow. Let Uτ = {gτ 6= 0} for each τ ∈ GF . If P ∈ Uτ ,
then

〈η±ϕ (P ), τ̂〉 ≤ 0.

Remark. This lemma is very close in spririt to lemma 5.5.

Proof. Let P̂ = (Y, y+NE ,X, x) ∈ Ûσ and let P = Π(P̂ ), c.f. (2.15). Since gτ (P̂ ) 6=
0, Yτ 6= 0. If v ∈ η±ϕ (P ), then there is a sequence Tk → ±∞ such that

v = lim
k→∞

1

|Tk|
(x(Tk)− x(0)),

where ϕ̂t(y + NE ,Y,X, x) = (Y(t), y(t) + NE ,X(t), x(t)) and ϕ̂t is the lift of ϕt to

T ∗Σ̂. Thus:

〈v, τ̂〉 = lim
k→∞

1

|Tk|
〈x(Tk), τ̂〉.

On the other hand Ĥ and gτ are first integrals of ϕ̂t. Inspection of equation 3.16

shows that Ĥ(P̂ ) ≥ g
bτ/2
τ exp(bσ〈x(T ), τ̂〉) for all T . Since bσ, bτ > 0 and gτ 6= 0,

this inequality implies that

1

|Tk|
〈x(Tk), τ̂〉 ≤

1

|Tk|bσ

(

ln Ĥ− bτ
2

ln gτ

)

k→∞−→ 0.

Since v ∈ η±ϕ (P ) was arbitrary, this proves the lemma. �

As noted above, the fibre bundle structure VE/NE
� � // Σ

p// // Vo,F /LLLF of

Σ induces the sub-bundle V = ker dp ⊂ TΣ and its annihilator V⊥ ⊂ T ∗Σ. The
sub-bundle V⊥ is the intersection of Zτ = g−1

τ (0) over all τ ∈ BF ; it is also
isomorphic to Σ×V∗

o,F .

Lemma 6.2. Let H1,H2 be defined by equation 3.16 with root bases Ψ1,Ψ2 . If
h : T ∗Σ → T ∗Σ conjugates their Hamiltonian flows, then

h(V⊥) = V⊥.
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Proof. Let U be the set of points in V⊥ that are mapped out of V⊥ under h. Since
P 6∈ V⊥ iff ∃τ ∈ BF such that gτ (P ) 6= 0, one sees that

U = h−1(∪τ∈BF
Uτ ) ∩V⊥.

It suffices to prove that U is empty, since a symmetric argument applies to h−1.
Therefore, it suffices to prove that Uτ = h−1(Uτ )∩V⊥ is empty for all τ . Since Uτ

is open, Uτ is an open subset of V⊥, so to prove that it is empty, it suffices to show
that Uτ is nowhere dense. As noted above, V⊥ is naturally isomorphic to Σ× V ∗

o .
Let πo : V⊥ → V ∗

o denote the projection onto the second factor. Clearly, πo is an
open map and πo(P ) = X where P = Π(0, y,X, x) ∈ V⊥. It suffices to show that
πo(Uτ ) lies in a hyper-plane to prove the lemma.

Let ϕi be the Hamiltonian flow of Hi, and Qi the quadratic form used to define
Hi (Equation 3.16). If P ∈ Uτ , then P ∈ V⊥ so

η±ϕ1(P ) = {±Q1 · X},
while h(P ) ∈ Uτ , so from the previous lemma

〈η±φ2(h(P )), τ̂〉 ≤ 0.

Since ϕ2
th = hϕ1

t ,

η±ϕ2(h(P )) = h∗η
±
ϕ1(P )

which implies that
±〈h∗Q1X, τ̂〉 ≤ 0.

Therefore, 〈h∗Q1X, τ̂〉 vanishes. Since h∗Q1 is non-degenerate, X = πo(P ) lies in a
fixed hyper-plane. Thus, πo(Uτ ) lies in a hyper-plane. Since πo is an open map, Uτ

is empty. �

Remark 6.1. Lemmas 6.1 and 6.2 can be reformulated and shown to hold in
much greater generality. Let ΣA be defined as in 1.1 and let H : T ∗ΣA → R

be a smooth, fibre-wise convex hamiltonian that is left-invariant. Left-invariance
implies that H enjoys the integral f (1.5). In particular, if one defines the function
γi(P ) = |pyi

exp(〈ℓi, x〉)|, then the properness of H implies that there is a function
c = c(H) such that 0 ≤ γi(P ) ≤ c(H(P )) for all P ∈ T ∗ΣA. The proof of lemma
6.2 applies to show that if γi(P ) 6= 0, then 〈ℓi, v〉 ≤ 0 for all v ∈ η±(P ). This
implies that the asymptotic homology of a point P with

∏

i γi(P ) 6= 0 is trivial and
that a topological conjugacy of two such hamiltonian flows must map V⊥ to itself.

Definition 6. A homeomorphism h : T ∗Σ → T ∗Σ is energy-preserving if h({H1 =
1
2}) = {H2 = 1

2}.
We use the notation of Lemma 6.2 and its proof:

Theorem 6.3. Let H1,H2 be defined by Equation 3.16 corresponding to root bases
Ψ1,Ψ2. If h ∈ Homeo(T ∗Σ) is an energy-preserving conjugacy of ϕ1 with ϕ2, then

(1) h∗ : H1(T
∗Σ) → H1(T

∗Σ) induces automorphisms of LLLF and U+
F such that

the following commutes

U+
F

α //

ℓ

��

U+
F

ℓ

��
LLLF

f // LLLF ;

(∗)

(2) f is an isometry of (LLLF ,Q2) with (LLLF ,Q1);
(3) α preserves the number of fixed points of u ∈ U+

F acting on VE/NE:

|NF (α(u)− 1)| = |NF (u− 1)| ∀u ∈ U+
F .
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Proof. (1) The map h∗ on H1 induces an automorphism f of LLLF . The isomorphism
ℓ allows the definition of α as an automorphism of U+

F and shows that (*) commutes.

(2) Let Vi = V⊥ ∩H−1
i ( 12 ). Since h is energy preserving, Lemma 6.1 implies that

h(V1) = V2. Let ϕ
i|Vi be denoted by Φi and let h|V1 continue to be denoted by h.

Examples 6.1 and 6.1 show that

MΦi = {(ℓ(u), |ℓ(u)|Qi
, |NF (u− 1)|[E:F ]) : u ∈ U+

F , u 6= ±1}
for i = 1, 2.
(3) Finally, by hypothesis hΦ1 equals Φ2h, so from the identity MΦ2 = (h∗× idR×
idN)MΦ1 one sees that

|ℓ(u)|Q1
= |f◦ℓ(u)|Q2

= |ℓ(α(u))|Q2
, (6.5)

|NF (u− 1)| = |NF (α(u)− 1)| (6.6)

for all u ∈ U+
F . Equation (6.5) shows that f is an isometry, while equation (6.6)

shows that α preserves the number of fixed points.
�

Let us dualise Theorem 6.3. Let φi be a linear isomorphism V∗
o,F → h∗i induced

by a bijection ρi : BF → Ψ (see Definition 3). The norms |·|Qi
on LLLF are equivalent

modulo Aut(LLLF ) iff the dual norms | · |∗Qi
on LLL∗

F are equivalent modulo Aut(LLL∗
F ).

Since, by Theorem 3.2, there is a ci ∈ N such that |X|∗Qi
= c−1

i

√
〈〈φi(X), φi(X)〉〉i,

Theorem 6.3 implies

Corollary 6.4. If ϕ1 and ϕ2 are topologically conjugate by an energy-preserving
homeomorphism, then there exists µ ∈ Isom(h∗2; h

∗
1) and g = f∗ ∈ Aut(LLL∗

F ) such
that

µ =
c2
c1

× φ1gφ
−1
2 . (6.7)

Remark 6.2. One might attempt to use Corollary 6.4 to try to determine the
topological conjugacy classes of Hamiltonian flows. This is the approach taken
in [11]. However, this approach leads to some very delicate and long-outstanding
issues in transcendence and algebraic-independence theory. This paper skirts those
difficulties by employing all the information in the marked homology spectrum.

6.3. Periodic points of toral automorphisms. Part (3) of Theorem 6.3 has a
useful corollary: the number of period-k periodic points of the automorphisms u
and α(u) of the torus VE/NE are equal for all k. Therefore, their asymptotic rates
of growth are equal. Define the function h : Vo,F → R by

h(v) =
∑

τ∈BF

nτ 〈τ̂ , v〉+ (6.8)

for all v ∈ Vo,F , where •+ = max(•, 0). Since the growth rate of the number of
period-k periodic points of u ∈ U+

F is [E : F ]× h(ℓ(u)), this proves

Lemma 6.5. Under the hypotheses of Theorem 6.3, the automorphism f : LLLF →
LLLF satisfies

h = h◦f.
The function h is piecewise linear. One can characterise the sets on which h is

linear as follows. For J ⊂ BF , let

VJ
o,F := {v ∈ Vo,F : ∀τ ∈ J, 〈τ̂ , v〉 > 0 & ∀τ 6∈ J, 〈τ̂ , v〉 < 0 } . (6.9)

Note that if J = ∅ or J = BF , then VJ
o,F is empty; otherwise VJ

o,F is an open set

that is closed under addition and multiplication by positive scalars. Since VJ
o,F is
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open and it is closed under positive dilations, it contains balls of arbitrarily large
diameter and hence it contains points in LLLF . Therefore,

LLLJ
F := LLLF ∩VJ

o,F (6.10)

is a non-empty subset of LLLF , for all J ⊂ BF with J 6= ∅ and BF .
To return to h: for all J ⊂ BF , define

rJ :=
∑

τ∈J

nτ τ̂ . (6.11)

Lemma 6.6. The following is true:

(1) if v ∈ VJ
o,F , then h(v) = 〈rJ , v〉;

(2) if v ∈ LLLJ
F and f(v) ∈ LLLI

F , then rJ = f∗rI ;
(3) for each J ⊂ BF with J 6= ∅ and BF , there is a unique I ⊂ BF such that

f(LLLJ
F ) ⊂ LLLI

F ;
(4) f induces a permutation πππ of the power set 2BF that satisfies

(a) πππ(∅) = ∅ and πππ(BF ) = BF ;

(b) πππ(J) = I iff f(LLLJ
F ) ⊂ LLLI

F .

Proof. (1) h may be characterised as: h(v) = maxI⊂BF
〈rI , v〉. On the set VJ

o,F ,

this maximum is achieved uniquely at I = J . This proves that h = rJ on VJ
o,F .

(2) Let v ∈ LLLJ
F and f(v) ∈ LLLI

F . Lemma (6.5) implies that

〈rJ , v〉 = h(v) = h(f(v)) = 〈f∗rI , v〉 .
It is clear that the set LLLJ

F ∩ f−1(LLLI
F ) is an intersection of Zariski dense subsets of

Vo,F , hence is Zariski dense since it is non-empty. Therefore rJ must equal f∗rI
on Vo,F .

(3) Let vi ∈ LLLJ
F and assume that f(vi) ∈ LLLIi

F . Therefore, from the previous step
f∗rI1 = rJ = f∗rI2 . Since f is an automorphism rI1 = rI2 . Since the map
I 7→ rI : 2BF → V∗

o,F is injective except at ∅ and BF (both are sent to 0), one
concludes that I1 = I2.
(4) From step (3), the properties (a-b) uniquely define a map πππ : 2BF → 2BF

because VJ
o,F 6= ∅—hence LLLJ

F 6= ∅ — for all J ⊂ BF , J 6= ∅,BF . This map πππ is
invertible because f is induced by the homeomorphism h: one can equally start
with h−1, get f−1 and define πππ′ thusly. Step (3) shows that πππ′ = πππ−1.

�

Let us be more precise about the nature of f . Lemma 6.7 should be compared
with [11, Theorem 7], where the Gel’fond conjecture [19] is invoked to obtain the
weaker conclusion that f∗ ∈ Aut(LLL∗

F ) ∩Aut(V∗
o,F,Q).

Lemma 6.7. Let V∗
o,F,Z be the Z-module spanned by

{
nτ τ̂ |Vo,F

: τ ∈ BF

}
and

LLL∗
F = Hom(LLLF ,Z). Then

f∗ ∈ Aut(LLL∗
F ) ∩Aut(V∗

o,F,Z) (6.12)

Proof. Note that πππ is defined by rJ = f∗rπππ(J) for all J . If J = πππ−1 {τ}, then
f∗(nτ τ̂) = rJ ∈ V∗

o,F,Z, (6.13)

since r{τ} = nτ τ̂ . On the other hand, if J = {τ}, then
(f∗)−1(nτ τ̂) = rπππ(J) ∈ V∗

o,F,Z.

This proves that f∗ ∈ Aut(V∗
o,F,Z), and since f ∈ Aut(LLLF ), the lemma is proven.

�
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Lemma 6.8. Let πππ : 2BF → 2BF be the permutation defined in Lemma 6.6. If
I, J ⊂ BF are disjoint sets, then

πππ(I ⊔ J) = πππ(I) ⊔ πππ(J),

⊔ = disjoint union. Consequently, πππ is induced by a permutation of BF .

Proof. Since I ∩ J = ∅, rI⊔J = rI + rJ . Therefore

rπππ(I⊔J) = (f∗)−1rI⊔J = (f∗)−1(rI + rJ ) = rπππ(I) + rπππ(J). (6.14)

Assume that πππ(I) and πππ(J) are not disjoint. Then, there is a τ ∈ πππ(I)∩πππ(J). The
coefficient on τ̂ in the right-hand side of (6.14) is therefore 2nτ . The coefficient
on τ̂ in the left-hand side of (6.14) is at most nτ , however. Absurd. Therefore
πππ(I) ∩ πππ(J) must be empty.

Consider the #BF + 1 subsets of BF that contain at most 1 element. This is
the largest family of pairwise disjoint subsets of BF . Therefore, πππ must be map
this family to itself. Since πππ(∅) = ∅, πππ maps the singleton sets to singletons. �

Let the permutation of BF induced by πππ be denoted by πππ, too. Equation (6.13)
is thereby simplified to

∀τ ∈ BF : nσ f
∗σ̂ = nτ τ̂ ⇐⇒ πππ(τ) = σ. (6.15)

Intuitively, one wants to say that πππ should not mix up the real and non-real em-
beddings, so the coefficients on both sides of (6.15) ought to be equal. To prove
this, observe that (6.15) implies that

∀u ∈ U+
F : f◦ℓ(u) =

∑

τ∈GF

nτ

nπππ(τ)
ln |τ(u)| · τ. (6.16)

Since f ∈ Aut(LLLF ), the right-hand side lies in LLLF ⊂ Vo,F for all u. Let ξ =
∑

τ∈GF

nτ

nπππ(τ)
τ̂ ∈ V∗

F ; one sees that 〈ξ, ℓ(u)〉 = 0 since f◦ℓ(u) ∈ Vo,F . Since LLLF

spans Vo,F , this shows that ξ ∈ V⊥
o,F . Since

V⊥
o,F = span

{

τ − τ̂ , ǫ : τ ∈ Gc
F , ǫ =

∑

τ∈GF

τ̂

}

, (6.17)

and the coefficients nτ/nπππ(τ) are constant under the involution τ 7→ τ̄ , one sees that
ξ must be a multiple of ǫ. Therefore, nτ/nπππ(τ) must be independent of τ . Since πππ
is a permutation, this forces nτ/nπππ(τ) to be identically equal to unity. This proves

Lemma 6.9. The permutation πππ of GF preserves the type of each embedding. In
particular,

∀τ ∈ BF : f∗σ̂ = τ̂ ⇐⇒ πππ(τ) = σ. (6.18)

Lemma 6.10. For each τ ∈ BF , there exists a homomorphism ζτ : U+
F → S1 such

that

(1) for all u ∈ U+
F , τ(α(u)) = ζτ (u) · σ(u) where πππ(σ) = τ ;

(2) ζτ maps U+
F into S1 ∩ UK where K is the normal closure of F .

Proof. The equation f(ℓ(u)) = ℓ(α(u)) implies, via equation (6.18), that |τ(α(u))| =
|σ(u)| when σ = πππ−1(τ). Therefore, there is a unit modulus number ζ = ζτ (u) such
that τ(α(u)) = ζ · σ(u). The number ζ is a ratio of numbers in conjugates of F ,
hence it lies in the smallest field containing all conjugates of F , K. Moreover, one
sees that ζτ is a ratio of two homomorphisms, hence it is a homomorphism. Finally,
since ζ is a ratio of units of K, it is a unit of K. �
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6.4. Strictly Hyperbolic Number Fields. Lemma 6.10 shows that, if one can
force ζτ to be trivial, then α is an automorphism of F and πππ is induced by right
composition by α−1. One expects that this is always the case: the symmetries of
the number field F/Q ought to appear as symmetries (=topological conjugacies) of
the Hamiltonian system, and vice versa. However, when K contains infinite order
elements in S1, it is difficult to say anything meaningful about ζτ . This is quite
likely related to the fact that if u ∈ UK ∩ S1 has infinite order, then the induced
automorphism of the torus VK/OK is partially hyperbolic.

Definition 7. A unit u ∈ UF is hyperbolic if none of its conjugates have unit
modulus. F is hyperbolic if its only non-hyperbolic units are roots of unity. F is
strictly hyperbolic if its normal closure, K, is hyperbolic.

In other words, F is hyperbolic iff

#UF ∩ S1 < ∞. (6.19)

If F is hyperbolic, then U+
F acts on the torus VF /NF as a group of Anosov au-

tomorphisms; if F is strictly hyperbolic, then the ‘closure’ of U+
F , U+

K , acts on the
torus VK/OK as a group of Anosov automorphisms.

Strict hyperbolicity is a property of the normal closure K: K itself is strictly
hyperbolic and so, therefore, are all its subfields. Examples of strictly hyperbolic
number fields are legion; there also appear to be many hyperbolic but not strictly
hyperbolic number fields.

Examples.

(1) F is totally real if all its conjugates are real. In this case, its normal closure is
also totally real and so UK ∩ S1 = {±1}. Thus, all totally real number fields are
strictly hyperbolic.
(2) Let ζ be a p-th root of unity for some odd prime p. The field K = Q(ζ) has
the totally real subfield F = Q(ζ + ζ−1) of index 2. The Dirichlet theorem on the
group of units implies that UF is of finite index in UK . Since F is totally real, K is
strictly hyperbolic.
(3) More generally, let K/Q be a non-real, normal extension of Q. If K has a
totally real subfield F of index 2, then, as above, UF is a finite-index subgroup of
UK , hence K is strictly hyperbolic.
(4) A penultimate, concrete example: let F = Q(a) where a is the unique real

root of p(x) = x3 + 3x − 1. The discriminant of p is d = −27 × 5, so
√
d 6∈ Q,

which implies that F is not a normal extension of Q (p’s roots are approximately
0.3222,−0.1611± 1.7544

√
−1, which also implies F cannot be normal). Therefore,

the normal closure of F is a degree 6 extension K. The group U+
K has rank 2 since

K has no real embeddings, while a and one of its conjugates are multiplicatively
independent units in U+

K , neither of which lies on S1. This means that UK ∩ S1

must be finite, so K and F are strictly hyperbolic.
(5) Let us end with an example of a hyperbolic number field that is not strictly
hyperbolic. Let a, b, c be the roots of p(x) = x3+3x−1 where a is the real root as in
the previous example. It is clear that |b| = 1/

√
a. Let E = Q(

√
a), which is a real,

degree 6 extension of Q and let E′ = Q(
√
b) and E′′ = Q(

√
c) be the conjugates

of E. It is claimed that E is hyperbolic, that is, if u ∈ UE has a conjugate v of
unit modulus, then u = ±1. To verify this claim, let u ∈ E have a conjugate of
unit modulus. Without loss of generality, this conjugate can be assumed to be
some v ∈ E′. Since b̄ = c, one sees that v̄ ∈ E′′ and that vv̄ = 1 implies that
v, v̄ ∈ E′ ∩ E′′. The field E′ ∩ E′′ is of degree 1, 2, 3 or 6. It cannot be 6, since
E′ 6= E′′, so its degree is 1, 2 or 3. The degree of E′ ∩ E′′ cannot be 3 so it must
be 1 or 2. If the degree is 1, then the claim is proved; if the degree is 2, then v is a
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unit in a complex quadratic number field, hence v is a root of unity. This implies
that u is a root of unity in the real field E, hence u = ±1 as claimed.

On the other hand, the normal closure L of E contains
√
a and b and therefore

the unit modulus number η = b
√
a. If η were an n-th root of unity, then 1 = η4n =

b4na2n; but a and b are multiplicatively independent in K = Q(a, b, c), so n = 0.
This shows that η ∈ UL ∩ S1 has infinite order and completes the proof that E is
hyperbolic but not strictly hyperbolic.

Let us turn to a theorem which demonstrates the importance of strictly hyper-
bolic number fields. The choice of the set BF involves an arbitrariness which it has
been possible to avoid up to this point. To work around this arbitrariness, let the
map πππ be extended to a map of GF by

πππ(τ) = πππ(τ̄) ∀τ 6∈ BF . (6.20)

Theorem 6.11. If F is strictly hyperbolic, then there is a β ∈ Aut(F/Q) such that

(1) the induced maps UF /RF
α

β
// UF /RF coincide;

(2) πππ(τ) = τ◦β−1 ∀τ ∈ GF ;

(3) f = Rβ−1

∣
∣
Vo,F

where Rβ : VF → VF is the linear transformation induced

by precomposition with β ∈ Aut(F/Q).

Recall that RF is the set of units in UF all of whose conjugate lie on S1. If F is
strictly hyperbolic, then RF = UF ∩ S1.

Proof. For the purposes of this proof, it is convenient to extend α ∈ Aut(U+
F ) to an

automorphism of UF = U+
F ⊕RF by extending α as the identity on RF . The choice

of extension of α is immaterial. The extension of α permits the extension of the
homomorphism ζτ (Lemma 6.10), too. Since F is strictly hyperbolic, all conjugates
of UF ∩S1 lie in S1. Since α maps UF ∩S1 to itself, this implies that the extended
homomorphism ζτ maps UF into S1.

Let U1
F = ∩τ∈BF

ker ζτ . Since UK ∩ S1 is finite, ker ζτ is a finite-index subgroup
of U+

F for all τ ; thus U1
F is a finite-index subgroup. Lemma 6.10.1 implies that

∀u ∈ U1
F , τ ∈ BF : σ(α(u)) = τ(u) where πππ(τ) = σ. (6.21)

This implies that σ(U1
F ) ⊂ τ(UF ); and since σ, τ are injective, the group σ(U1

F ) is a
finite-index subgroup of τ(UF ). Therefore, τ(F ) ∩ σ(F ) contains elements that are
of degree degF . Thus, the two fields coincide:

∀τ ∈ BF : τ(F ) = σ(F ) where πππ(τ) = σ. (6.22)

Fix σ, τ ∈ GF with πππ(τ) = σ and define

βσ := σ−1◦τ. (6.23)

Then, βσ|U1
F
= α|U1

F
and βσ ∈ Aut(F/Q). Because U1

F is a finite-index subgroup

of UF it contains elements of degree degF . It is clear that two automorphisms of
F/Q which coincide on an element of degree degF , coincide on F . Therefore, there
is a single β ∈ Aut(F/Q) such that βσ = β for all σ.

Moreover, from (6.22) and the remarks in the first paragraph, one knows that
ζσ maps UF into UF ∩ S1. Consequently, σ−1◦ζσ maps UF into UF ∩ S1. Since

α(u) = σ−1 (ζσ(u)) · β(u) ∀u ∈ UF , (6.24)

one sees that the invariance of S1 under embeddings of F implies that the induced

maps UF /UF ∩ S1 α

β
// UF /UF ∩ S1 are equal. Since U+

F is a non-canonical lift-

ing of UF /UF ∩ S1 to U+
F , one may declare that α = β|U+

F
.
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Finally, equation (6.23) implies that

∀τ ∈ BF : πππ(τ) = σ ⇐⇒ σ = τ◦β−1. (6.25)

Therefore, the way in which πππ is extended to GF shows that πππ(τ) = τ◦β−1 for all
τ ∈ GF . This proves the theorem. �

6.5. Topological conjugacy classes. The results of the previous section afford
the opportunity to classify the Hamiltonian flows of the Bogoyavlenskij-Toda-type
Hamiltonians (equation 3.16) up to topological conjugacy — at least in some situ-
ations.

Standing Hypothesis: For the remainder of section 6, unless explicitly stated
otherwise, it is assumed that F is a strictly hyperbolic number field.

6.5.1. Root bases and Dynkin Diagrams. Recall that for each root basis Ψ there is a
labelled graph Γ(Ψ), called the Dynkin diagram, whose vertices are the points of Ψ.

A pair of distinct vertices r, s have 4〈〈r, s〉〉2/|r|2|s|2 edges connecting them, and if
|r| > |s| then there is an arrow pointing from r to s. The vertex r has the label ωr.
The Coxeter diagram is obtained from the Dynkin diagram by erasing the labels and

arrows. If Ψ is a root system other than A
(2)
2n , then one says that a permutation

ρ ∈ S(Ψ) is an automorphism of the Dynkin diagram Γ(Ψ) iff the permutation
leaves the Dynkin diagram unchanged with the exception of the numbering of the
roots. Aut(Γ(Ψ)) is the automorphism group of Γ(Ψ). Note that ρ ∈ Aut(Γ(Ψ))

iff ωr = ωρ(r) and 〈〈r, s〉〉 = 〈〈ρ(r), ρ(s)〉〉 for all r, s ∈ Ψ. For the root system A
(2)
2n ,

one defines the automorphism group, Aut(Γ(A
(2)
2n )), to be the group generated by

the permutation that maps rj → rn+2−j for all j (see figures 8–9).
In the above discussion, one sees that the Cartan-Killing form must be nor-

malised. We adopt the following normalisation: the shortest roots of D
(2)
n+1 and

A
(2)
2n have length 1/

√
2; all other root systems’ shortest roots have unit length.

This normalisation implies that the longest root(s) of G
(1)
2 and D

(3)
4 have length√

3, while all other root systems’ longest roots have length
√
2.

Proposition 6.1. Assume that F/Q is strictly hyperbolic and #BF > 2. Let
ρi ∈ Bi = B(BF ,ΨΨΨi) be bijections and let Hi be defined by Equation 3.16 with
Hamiltonian flow ϕi. If there is an energy-preserving conjugacy of ϕ1 with ϕ2,
then µ (equation 6.7) induces ν : ΨΨΨ2 → ΨΨΨ1 which is an isomorphism of Coxeter
diagrams. Thus,

Case A: if ΨΨΨ1 6∈
{

C
(1)
n , A

(2)
2n , D

(2)
n+1

}

, then

(a) ΨΨΨ1 = ΨΨΨ2;
(b) the constants c1 = c2 in the definition of Φi (theorem 3.2);
(c) ν ∈ Aut(Γ(Ψ)).

Case B: if ΨΨΨ1 ∈
{

C
(1)
n , A

(2)
2n , D

(2)
n+1

}

, then

(a) ΨΨΨ2 ∈
{

C
(1)
n , A

(2)
2n , D

(2)
n+1

}

;

(b) the constants c1 and c2 in the definition of Φi (theorem 3.2) are related
by the following diagram:

C
(1)
n

×1}}{{
{{

{{
{{

×1

��

A
(2)
2n

1×
00

× 1
2 // D

(2)
n+1

×2

bbDDDDDDDD

×1
uu

where the factor ⋆
yields c2 = c1 × ⋆.
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(c) if ΨΨΨ1 = ΨΨΨ2, then ν ∈ Aut(Γ(Ψ)).

Proof. From equation (6.15) and corollary 6.4, one knows that µ in equation (6.7)
maps a root in h∗2 to a non-zero multiple of a root in h∗1. Let ν denote the induced
bijection ΨΨΨ2 → ΨΨΨ1. Since µ maps r ∈ Ψ2 to a scalar multiple of the root ν(r) ∈ Ψ1,
one can write µ(r) = arν(r) for some coefficients ar.

To determine the coefficients ar, note that φi(τ) = n−1
τ ωriri where ρi(τ) = ri.

One computes that

µ(r) =
c2
c1

× φ1◦f∗◦φ−1
2 (r) by definition of µ,

=
c2
c1

× nτ

ωr
× φ1◦f∗(τ̂) where ρ2(τ) = r,

=
c2
c1

× nσ

ωr
× φ1(σ̂) where nσ σ̂ = nτ f

∗τ̂ ,

=
c2
c1

× ων(r)

ωr
× ν(r) where ρ1(σ) = s, φ1(σ̂) =

ωs

nσ
s and ν(r) = s.

Therefore, since µ is an isometry

〈〈r, s〉〉2 =

(
c2
c1

)2

× ων(r) ων(s)

ωr ωs
× 〈〈ν(r), ν(s)〉〉1 ∀r, s ∈ Ψ2. (6.26)

This implies that the Coxeter diagrams of ΨΨΨ1 and ΨΨΨ2 are isomorphic. Inspection
of figures 8–9 shows that {ΨΨΨ1,ΨΨΨ2} is contained in one of the following sets:

{

A(1)
n

} {

B(1)
n , A

(2)
2n−1

} {

C(1)
n , A

(2)
2n , D

(2)
n+1

}

{

D(1)
n

} {

G
(1)
2 , D

(3)
4

}

{

E(1)
n

}

n=6,7,8

{

F
(1)
4 , E

(1)
6

}

(6.27)

Case A. Suppose that we are in one of the cases covered by the first two columns of
(6.27). Note that since ci ∈ N, one obtains that

|r|2
|ν(r)|1

=
c2
c1

× ων(r)

ωr
∈ Q ∀r ∈ Ψ2. (6.28)

The possible ratios of root lengths is 1,
√
2 and

√
3 or ratios of the these

three numbers. Therefore, the ratios are always 1. This proves that ν is
itself an isometry. Therefore ΨΨΨ1 = ΨΨΨ2.

To prove that c1 = c2, note that since ν is a permutation of ΨΨΨ, it has
finite order. If r ∈ Ψ is a fixed point of νk for some k ≥ 1, then equation
6.28 implies that

1 =

(
c2
c1

)k

× ων(r)

ωr
× ων2(r)

ων(r)
× · · · × ωνk(r)

ωνk−1(r)

, (6.29)

so 1 =
(

c2
c1

)k

.

Case B. In this case, following equation (6.28), the rational ratios that are possible
are 1, 2 or 1/2. A simple check shows that the natural Coxeter isomorphisms

C
(1)
n → A

(2)
2n , A

(2)
2n → D

(2)
n+1 and D

(2)
n+1 → C

(1)
n satisfy this constraint with

c2/c1 equal to 1, 1/2 and 2 respectively (see figure 3). These Coxeter
isomorphisms are unique up to the action of the automorphism groups.
If ΨΨΨ1 = ΨΨΨ2, then these considerations imply that ν is a Dynkin diagram
automorphism and c2 = c1.

�
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C
(1)
n

A
(2)
2n

D
(2)
n+1

6

6

6

6

6

6

6

6

N N

Figure 3. The natural Coxeter isomorphisms ν : ΨΨΨ2 → ΨΨΨ1.

Remark 6.3. In [11, Lemma 24] there is a simpler version of theorem 6.1. It is

assumed there that ΨΨΨi 6= A
(2)
2n for both i and c2 = c1. In this case, ν must be an

automorphism of the Dynkin diagram.

7. Topological Entropy

In the proof of the complete integrability, Theorem 4.1, one sees that the singular
set of the algebra L + R is the union of L−1(Rc) and Z = k−1(0). Theorem 5.1
shows that the non-wandering set of the Hamiltonian flow ϕ of H, restricted to the
invariant set Z = W±(V⊥), is V⊥. What happens on the other part of the singular
set, L−1(Rc)?

7.1. The A
(1)
n lattice. Thanks to the work of Foxman and Robbins [15, 16], this

question is answerable for the A
(1)
n lattice.

Theorem 7.1. Let ΨΨΨ = A
(1)
n and H be a Bogoyavlenskij-Toda-like Hamiltonian

defined in equation 3.16. Then L−1(Rc) is stratified by symplectic manifolds that
are invariant under the Hamiltonian flow of H. Moreover, H restricted to each
stratum is completely integrable.

Proof. Let h = 2κ ∈ C∞(e+L∗
0+L∗

+1) be the Cartan-Killing form, so thatH = L∗h
(equation 3.16). Foxman and Robbins [15, 16] proved that h admits action-angle
variables with singularities, which means that for each point p ∈ e+L∗

0+L∗
+1, there

are coordinates (x, y, u, v) on a neighbourhood of p in OR
p such that the canonical

symplectic form on Op and h take the form

k∑

i=1

dxi ∧ dyi +

n∑

i=k+1

dui ∧ dvi, h = h(x, ρ)

ρi = u2
i + v2i , i = k + 1, . . . n,

where k = 0, . . . , n is the co-rank of the singularity (and if k = n, then there is
no singularity). The set ρ = 0 is an invariant symplectic submanifold and h is
completely integrable on this submanifold.

Let Xk ⊂ e + L∗
0 + L∗

+1 be one of these symplectic sub-manifolds of dimension

2k and co-dimension 2l where n = k + l. Let Yk = L−1(Xk).
Because L|k−1(R − 0) is a submersion onto e + L∗

0 + L∗
+1, Yk is a submanifold

of T ∗Σ of co-dimension 2l. Moreover, since L is a Poisson submersion, Yk is also a
symplectic submanifold. Since Xk is invariant under the hamiltonian flow of h, Yk

is similarly invariant.
From the above description of the singular action-angle variables, the algebra

L|Yk is equal to L∗Z∞(L∗)|Xk, which contains k functionally independent elements.
On the other hand, the algebra R|Yk contains dimVE functionally independent ele-
ments. Therefore, in total, there are k+dimVE functionally independent integrals
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of H at each point of Yk. Since dimYk = 2(k + dimVE), this proves the complete
integrability of H|Yk, which proves the theorem. �

Remark 7.1. It is clear from the proof that H|U is completely integrable with
singular action-angle variables. This is the mildest kind of singularity that a com-
pletely integrable may have. It is a stark contrast with the sort of singularity that
develops along Z = k−1(0).

It is natural to conjecture that the Foxman-Robbins theorem is true for all
Bogoyavlenskij-Toda lattices.

Corollary 7.2. Let ΨΨΨ = A
(1)
n and H be a Toda-like hamiltonian defined in equation

3.16. The topological entropy of ϕ1|H−1( 12 ), the time-1 map of the hamiltonian flow
of H, equals

htop =
[E : F ]

c
×
√

floor

(
n+ 1

2

)

(7.1)

where n = dimVo,F and c ∈ 1
2Z

+ as in theorem 3.2.

Proof. Since ϕ admits singular action-angle variables on k−1(R − 0), we see that
the topological entropy of ϕ is generated entirely in k−1(0) = W±(V⊥). The non-
wandering set of ϕ|W±(V⊥) is V⊥ by theorem 5.1. Thus

htop(ϕ|H−1(
1

2
)) = htop(ϕ|V⊥

1 ) =
[E : F ]

c
×
√

floor

(
n+ 1

2

)

by table 5. (7.2)

�

7.2. The remaining Bogoyavlenskij-Toda lattices. As in [11, Section 3], the

universal covering space Σ̃ = VE×Vo,F admits the structure of a solvable Lie group.
The element v ∈ Vo,F acts by right translation by the one-parameter subgroup

φ̃v
t (y, x) = (y + t · v, x). (7.3)

This flow descends to a flow φv on Σ. As in [11, Lemma 12],

htop(φ
v) = [E : F ]×

∑

τ∈BF

nτ 〈τ̂ , v〉+ (7.4)

where u+ = max{u, 0}.
Let H be defined by equation (3.16) and let

V⊥
1 = V⊥ ∩H−1(

1

2
) (7.5)

where V⊥ is defined in section 5. If v = Q · X with X ∈ V∗
o,F , and 〈Q · X,X〉 = 1,

then ∆ · (y, x, 0,X) ∈ V⊥
1 . The topological entropy of the Hamiltonian flow ϕ of H

is therefore equal to

1

[E : F ]
× htop(ϕ|V⊥

1 )

= max
X:〈Q·X,X〉=1

∑

τ∈BF

nτ 〈τ̂ ,Q · X〉+

= max
X:〈Q·X,X〉=1

∑

τ∈BF

nτ 〈〈φρ(τ̂), φρ(X)〉〉

= max
s∈h:〈〈s,s〉〉=1

∑

r∈ΨΨΨ

ωr

c
× 〈r, s〉+ where φρ(τ̂) =

ωr

nτ c
r, s = φρ(X)

= c−1 ×max
I⊂ΨΨΨ

∣
∣
∣
∣
∣

∑

r∈I

ωr r

∣
∣
∣
∣
∣

(7.6)
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The right-hand side of 7.6 is computed in [11, Lemma 13 and Theorem 3]. These
results are summarised in table 5.

htop(ϕ|V⊥
1 ) = h× [E:F ]

c

ΨΨΨ h ΨΨΨ h ΨΨΨ h

B
(1)
n , n ≥ 3 2

√
n− 1 A

(2)
2n−1, n ≥ 3

√

2(n− 1)

G
(1)
2 , (n = 2) 2

√
3 D

(3)
4 , (n = 2) 2

F
(1)
4 , (n = 4) 2

√
6 E

(2)
6 , (n = 4) 2

√
3

C
(1)
n , n ≥ 2

√
2n A

(2)
2n , n ≥ 2 2

√
n D

(2)
n+1, n ≥ 2

√
n

E
(1)
6 , (n = 6) 2

√
3 E

(1)
7 , (n = 7) 2

√
6 E

(1)
8 , (n = 8) 2

√
15

A
(1)
n , n ≥ 2

√

floor
(
n+1
2

)
D

(1)
n , n ≥ 4

√

2(n− 2) A
(1)
2 , (n = 1)

√
2

Table 5. Entropies of the Bogoyavlenskij-Toda-like systems. The
root systems in the first 4 rows have isomorphic Coxeter graphs;
the root systems in the last 2 rows have unique Coxeter graphs.
n = dimVo,F .

Table 5 permits one to give lower bounds on the number of Bogoyavlenskij-Toda-
like systems which are not energy-preserving topologically conjugate.

Proposition 7.1. For each n ≥ 2, table 6 displays Bogoyavlenskij-Toda-like sys-
tems, defined in (3.16), that are not topologically conjugate via an energy-preserving
conjugacy.

n RootSystems Total

2 A
(1)
2 , C

(1)
2 , G

(1)
2 , A

(2)
2·2 4

3 A
(1)
3 , C

(1)
3 , A

(2)
2·3, A

(2)
2·3−1 4

4 A
(1)
4 , B

(1)
4 , A

(2)
2·4, A

(2)
2·4−1 4

5 A
(1)
5 , B

(1)
5 , C

(1)
5 , D

(1)
5 , A

(2)
2·5, A

(2)
2·5−1 6

6 A
(1)
6 , B

(1)
6 , D

(1)
6 , A

(2)
2·6, A

(2)
2·6−1 5

7 A
(1)
7 , B

(1)
7 , C

(1)
7 , D

(1)
7 , A

(2)
2·7, A

(2)
2·7−1 6

8 A
(1)
8 , B

(1)
8 , C

(1)
8 , D

(1)
8 , E

(1)
8 , A

(2)
2·8−1 6

≥ 9 even A
(1)
n , B

(1)
n , D

(1)
n , A

(2)
2·n, A

(2)
2·n−1 5

≥ 9 odd A
(1)
n , B

(1)
n , C

(1)
n , D

(1)
n , A

(2)
2·n, A

(2)
2·n−1 6

Table 6. Minimal number of Bogoyavlenskij-Toda-like systems
that are not iso-energetically topologically conjugate.

Proof. Use table 5 to determine a list of root systems the ratio of whose entropies
do not lie in 1

2Z. Note that this list is not unique. �

7.3. Summary. If the results from table 5 are combined with proposition 6.1, one
obtains the much stronger result:
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Theorem 7.3. Let F/Q be a strictly hyperbolic number field with n+1 = #BF >
2. The number of iso-energetic topological conjugacy classes of Hamiltonian flows
constructed from Equation (3.16) is at least

∑

rankΨΨΨ=n

#(Aut(Γ(ΨΨΨ))\B(ΨΨΨ)/Aut(F/Q)) . (7.7)

where we sum over all rank n root systems except D
(2)
n+1.

Proof. By Proposition 6.1, we know that if the Bogoyavlenskij-Toda-like Hamilton-
ian flows ϕi are conjugate by an energy-preserving conjugacy, then there are two
possibilities

Case A. The root systems coincide, c1 = c2 and the map ν = µ is an automorphism
of Γ(ΨΨΨ). The definition of µ (equation 6.7 and supra 6.26) implies that the
maps φ1, φ2 are related by

φ1 = µ · φ2 ·R∗
β β ∈ Aut(F/Q) (7.8)

where theorem 6.11 is used. Conversely, given any φ2, a φ1 defined as in
equation (7.8) is induced by a bijection ρ1 ∈ B.

Case B. The two root systems differ, as in Case B of Proposition 6.1. The topological
entropy of ϕi|V⊥

1 ∩ Hi(
1
2 ) is an invariant of energy-preserving conjugacy

by Lemma 6.2. Table 5 implies that the root systems must therefore be

{ΨΨΨ1,ΨΨΨ2} =
{

A
(2)
2n , D

(2)
n+1

}

or
{

C
(1)
n , D

(2)
n+1

}

. Since the sum (7.7) counts

the conjugacy classes from only one of these two root systems, there is no
double counting. This proves the theorem.

�

Remark 7.2. In [11, Example 3, p. 541], the case where F = E = Q(α), with α
a root of the cubic x3 − 4x + 2, was considered (c.f. example 4.1.1 supra ). F is a
cubic, totally-real, non-normal extension of Q. Thus, Aut(F/Q) is trivial and F is
strictly hyperbolic. If one sums over the rank 2 root systems and divides out by
the order of their automorphism groups, then Theorem 7.3 implies that there are
at least

1 + 3 + 6 + 3 + 6 = 19 (summing over A
(1)
2 , C

(1)
2 , G

(1)
2 , A

(2)
2·2, D

(3)
4 ) (7.9)

iso-energetic topological conjugacy classes. In [11, theorem 8], the lower bound of 10
was conjectured.5 This lower bound depended on Gel’fond’s conjecture concerning
the algebraic independence of rationally-independent sets of logarithms of algebraic
numbers. The results of the present paper, using dynamical systems theory, has
proven this lower bound.

In a similar vein, if F = E is a totally real quartic field with Aut(F/Q) = 1,
then one has at least

3 + 4× 12 = 51 (summing over A
(1)
3 , B

(1)
3 , C

(1)
3 , A

(2)
2·3, A

(2)
2·3−1) (7.10)

iso-energetic topological conjugacy classes.

Remark 7.3. Theorem 7.3 provides a means to compute a lower bound on the
number of iso-energetic topological conjugacy classes when Aut(F/Q) is non-trivial,
too. Both ΨΨΨ and BF are unnaturally isomorphic to the set {1, . . . , n+ 1}. Theorem
6.11, part 2, shows that the representation of Aut(F/Q) in the group of permuta-
tions of BF , S(BF ), is the natural right regular representation (one should view
BF = GF /(· ∼ ·̄)). By definition, the automorphism group of the Dynkin diagram
is a subgroup of the group of permutations of the roots, S(ΨΨΨ). Therefore, the

5Inexplicably, only the first three root systems are included in that sum, so the conjectural

lower bound ought to be 19.
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unnatural isomorphisms of ΨΨΨ and BF with {1, . . . , n+ 1} identify the set of bijec-
tions B(ΨΨΨ) with the symmetric group of {1, . . . , n+ 1}, Sn+1, with the resulting
equivariant diagram (where left/right arrows denote the standard left (resp. right)
actions)

Aut(Γ(ΨΨΨ)) � � //
s�

%%KKKKKKKKKK

∼=

��

S(ΨΨΨ) //

∼=

��

B(ΨΨΨ)

∼=

��

S(BF )oo

∼=

��

Aut(F/Q)? _oo
kK

xxrrrrrrrrrr

∼=

��
G

� � // Sn+1
id. // Sn+1 Sn+1

id.oo H.? _oo

(7.11)

This implies that #(G\Sn+1/H) equals #(Aut(Γ(ΨΨΨ))\B(ΨΨΨ)/Aut(F/Q)). Table 7
shows the cardinality of each of these sets for n ≤ 9. The table is computed by
a C++ program written by the author; the computations were checked using the
GAP software package [18]. The source code and instructions are freely available
from the author’s web-page.

Table 7. The minimum number of iso-energetic topological con-
jugacy classes of Bogoyavlenskij-Toda-like systems. The Total col-
umn is based on Theorem 7.3 and Tables 8–9 of Coxeter graph
automorphism groups.
Zn = Z/nZ, Dn = the dihedral group of order 2n, Q = the quaternion

group of order 8.

#(Aut(Γ(ΨΨΨ))\B(ΨΨΨ)/Aut(F/Q)) .
rank
Galois grp Root systems (grouped with isomorphic Coxeter diagrams) Total

rank = 2

Aut(F/Q) A
(1)
2 C

(1)
2 /A

(2)
2·2/D

(2)
2+1 G

(1)
2 /D

(3)
4 Total

1 1 3× 2 6× 2 19
Z3 1 1× 2 2× 2 7
rank = 3

Aut(F/Q) A
(1)
3 C

(1)
3 /A

(2)
2·3/D

(2)
3+1 B

(1)
3 /A

(2)
2·3−1 Total

1 3 12× 2 12× 2 51
Z2 ⊕ Z2 3 6× 2 3× 2 21
Z4 2 4× 2 3× 2 16
rank = 4

Aut(F/Q) A
(1)
4 C

(1)
4 /A

(2)
2·4/D

(2)
4+1 B

(1)
4 /A

(2)
2·4−1 D

(1)
4 F

(1)
4 /E

(2)
6 Total

1 12 60× 2 60× 2 5 120× 2 497
Z5 4 12× 2 12× 2 1 24× 2 101
rank = 5

Aut(F/Q) A
(1)
6 C

(1)
6 /A

(2)
2·6/D

(2)
6+1 B

(1)
6 /A

(2)
2·6−1 D

(1)
6 Total

1 60 360× 2 360× 2 90 1 590
Z6 14 64× 2 60× 2 17 279
S3 19 72× 2 60× 2 21 304
rank = 6

Aut(F/Q) A
(1)
6 C

(1)
6 /A

(2)
2·6/D

(2)
6+1 B

(1)
6 /A

(2)
2·6−1 D

(1)
6 E

(1)
6 Total

1 360 2 520× 2 2 520× 2 630 840 11 910
Z7 54 360× 2 360× 2 90 120 1 704
rank = 7

Aut(F/Q) A
(1)
7 C

(1)
7 /A

(2)
2·7/D

(2)
7+1 B

(1)
7 /A

(2)
2·7−1 D

(1)
7 E

(1)
7 Total

continued next page

http://www.maths.ed.ac.uk/~lbutler/toda-c.html
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Table 7, continued from previous page

1 2 520 20 160× 2 20 160× 2 5 040 20 160 108 360
Z8 332 2 544× 2 2 520× 2 642 2 520 13 622
Z3
2 420 2 688× 2 2 520× 2 714 2 520 14 070

Z2 ⊕ Z4 362 2 592× 2 2 520× 2 666 2 520 13 772
Q 333 2 544× 2 2 520× 2 642 2 520 13 623
D4 391 2 640× 2 2 520× 2 690 2 520 13 921
rank = 8

Aut(F/Q) A
(1)
8 C

(1)
8 /A

(2)
2·8/D

(2)
8+1 B

(1)
8 /A

(2)
2·8−1 D

(1)
8 E

(1)
8 Total

1 20 160 181 440× 2 181 440× 2 45 360 362 880 1 154 160
Z9 2 246 20 160× 2 20 160× 2 5 040 40 320 128 246
Z2
3 2 256 20 160× 2 20 160× 2 5 040 40 320 128 256

rank = 9

Aut(F/Q) A
(1)
9 C

(1)
9 /A

(2)
2·9/D

(2)
9+1 B

(1)
9 /A

(2)
2·9−1 D

(1)
9 Total

1 181 440 1 814 400× 2 1 814 400× 2 453 600 7 892 640
Z10 18 264 181 632× 2 181 440× 2 45 456 789 864
D5 18 724 182 400× 2 181 440× 2 45 840 792 244

8. Conclusion

The current paper shows that there is a rich family of completely integrable
Hamiltonian systems to be found on the cotangent bundles of compact 2-step Sol-
manifolds. In addition to the questions in the introduction, let us mention the
following question which arises from lemma 6.10 and theorem 6.11.

Question F. Let F be a number field that is not strictly hyperbolic. Assume that
there is an automorphism α of UF and a permutation πππ of GF such that

∀u ∈ UF , ∀τ ∈ GF : |τ(α(u))| = |σ(u)| where πππ(τ) = σ, and (8.1)

∀τ ∈ GF : πππ(τ̄) = πππ(τ)

Is it true that there is an automorphism β of F/Q such that α = β|UF
? In other

words, is it true that ∩τ∈GF
ker ζτ is always a finite-index subgroup of UF ?

It appears the likely that the answer is yes. To explain: If ui is a basis of U+
F

and α ∈ Aut(UF ), then α(ui) = ǫi ×
∏

j u
aji

j for some integer matrix A = [aji] that
is invertible over the integers, and some root of unity ǫi ∈ UF . From the condition
(8.1), one knows that the system of linear equations

∑

j

aji ln |πππσ(ui)| = ln |σ(ui)| (8.2)

is satisfied for all j = 1, . . . ,#BF − 1 and embeddings σ ∈ BF . For a fixed
permutation πππ, one can treat (8.2) as a linear system that determines A. If there
is an integer solution, then this determines an automorphism α; if not, then there
is no such automorphism.

Salem number fields are good candidates to investigate question F because
these number fields have many infinite order units of modulus one. By means
of Maxima [24], it has been numerically verified that the answer to the refined ques-
tion is yes for the 13 lowest degree number fields generated by the ‘small’ Salem
numbers listed by Mossinghoff, based on [8, Table 1] and [25, Table 1].

http://maxima.sourceforge.net/
http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html
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Root
System

Dynkin Diagram
root number

weight

Automorphism
Group

A
(1)
1

1

1

2

1

Z2

A
(1)
n

1

1

2

1

n− 1

1

n

1

n+ 1

1

Dn+1 (n ≥ 2)

B
(1)
n

n+ 1

1

1

1 2

2

n− 1

2

n

2
Z2 (n ≥ 3)

C
(1)
n

n+ 1

1

1

2

n− 1

2

n

1 Z2 (n ≥ 2)

D
(1)
n

n+ 1

1

1

1 2

2

n− 2

2

n− 1

1

n

1

S4 (n = 4)
Z3

2 (n > 4)

G
(1)
2

2

3

1

2

3

1 1

F
(1)
4

5

1

1

2

2

3

3

4

4

2
1

E
(1)
6

1

1

3

2

4

3

5

2

6

1

2

2

7

1

D3

E
(1)
7

8

1

1

2

3

3

4

4

5

3

6

2

7

1

2

2

Z2

E
(1)
8

1

2

3

4

4

6

5

5

6

4

7

3

8

2

9

1

2

3

1

Table 8. Root systems, their Dynkin diagrams and automor-
phism groups. Symmetries are indicated by arrows. Dn is the
symmetry group of a regular n-gon.
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Root
System

Dynkin Diagram
root number

weight

Automorphism
Group

A
(2)
2

1

1

2

2

1

A
(2)
2n

1

2

2

2

n

2

n+ 1

1 Z2 (see text,
n ≥ 2)

A
(2)
2n−1

n+ 1

1

1

1 2

2

n− 1

2

n

1
Z2 (n ≥ 3)

D
(2)
n+1

1

1

2

1

n

1

n+ 1

1 Z2 (n ≥ 2)

E
(2)
6

5

1

1

2

2

3

3

2

4

1

1

D
(3)
4

1

1

2

2

3

1 1

Table 9. Root systems, their Dynkin diagrams and automor-

phism groups. The shortest roots of D
(2)
n+1 and A

(2)
2n have length

1/
√
2; all other root systems’ shortest roots have unit length. The

longest root(s) of G
(1)
2 and D

(3)
4 have length

√
3; all other root

systems’ longest roots have length
√
2.
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