AN OPTICAL HAMILTONIAN AND OBSTRUCTIONS TO
INTEGRABILITY

LEO T. BUTLER

ABSTRACT. If the geodesic flow of a compact finslerian 3-manifold is
completely integrable, and its singular set is a tame polyhedron, then the
manifold’s 7, is almost solvable [5]. Is this true for non-commutatively
integrable geodesic flows? This note constructs non-commutatively in-
tegrable optical hamiltonians on the unit-sphere bundle of homogeneous
spaces of PSLyR that have a real-analytic singular set. These flows are
not tangent to a lagrangian foliation with a tame singular set.

1. INTRODUCTION

A smooth (C!) action ¢ : R® x M — M is integrable if there is an open,
dense subset R that is covered by angle-action charts (6,1) : U — T* x R!
which conjugate ¢; (¢ € R°) with a translation-type map (6,1) — (0 +
w(I)t, I) where w : R’ — Hom(R?® R*) is a smooth map. There is an
open dense subset L C R fibred by ¢-invariant tori [1]. Let f : L — B
be the C! fibration which quotients L by these invariant tori and let ' =
M — L be the singular set. If T is a tamely-embedded polyhedron, then ¢
is called k-semisimple with respect to (f, L, B). Semisimplicity is a form of
topologically-tame integrability.

Let 7 : E — X be a fibre bundle with compact fibres, and let ¢ : R* X E —
E be an action. Let ¢ € @ C X be such that the inclusion ¢ : (¥, ¢q) C (2, Q)
induces a bijection on 7. Say that ¢ is Hopf-Rinow over @ if for each
¢ € m1(X;q) there exists T € R® and v € Eg such that y(t) = 7 o ¢y (v)
defines a curve « : ([0,1],{0,1}) — (£,Q) and y € v.c. The action is Hopf-
Rinow if it is Hopf-Rinow over some ). A finslerian geodesic flow on the
unit-tangent sphere bundle is the standard example of a Hopf-Rinow flow.

Main Result. Let ¥ be a finite-volume homogeneous space of PSLoR, S¥
its unit-tangent sphere bundle.

Theorem 1.1. There is a Hopf-Rinow action ¢ : R? x S¥ — SX that is
2-semisimple. The topological entropy of ¢ vanishes.

See Theorem 7.4 below. Since 71(X) is a lattice subgroup of PSLoR, it is
not almost solvable, so Theorem 1.1 sharpens

Theorem 1.2 (c.f. [5]). If the unit-sphere bundle of a compact 3-manifold
Y admits a 3-semisimple Hopf-Rinow action, then m1(X) is almost solvable.
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This implies that a (-invariant singular lagrangian fibration has a topo-
logically wild singular set (see the Remark following Theorem 6.3, t00).

Theorem 1.2 has a straightforward proof (assume L is connected): L
deform retracts onto a T3-bundle over a circle or point, so 7 (L) is solvable.
The Hopf-Rinow property implies that im(7; (L) — 1 (X)) is of finite-index,
so 71(X) is almost solvable.! However, in the 2-semisimple case, L deform
retracts onto a T2-bundle over a compact surface, so 71 () is unconstrained.

The action ¢ of Theorem 1.1 has a distinguished 1-parameter subgroup
induced by an optical hamiltonian (see Equation 3.3). This optical hamil-
tonian is the hamiltonian of a charged particle moving in the presence of a
magnetic field. The symplectic reduction of this system models the motion
of a particle moving on a constant negative curvature surface along curves
of constant geodesic curvature. The reduced system has been used to con-
struct examples of magnetic geodesic flows without periodic orbits on an
energy surface [6] and as a system which exhibits a transition from complete
integrability to chaos [10]. The former example is not Hopf-Rinow, while
the latter is Hopf-Rinow only on the energy levels where it is chaotic. The
optical-hamiltonian flow of Theorem 1.1 is Hopf-Rinow but, since its entropy
vanishes, it is not conjugate to a geodesic flow, so

Question A: Is there a 2-semisimple finslerian geodesic flow on one of the
sphere bundles of Theorem 1.17

A Second Result. A group is anabelian if 1 is the only abelian subgroup
whose normalizer is of finite index. The fundamental group of a hyperbolic
manifold of finite volume is a basic example of an anabelian group. The 71’s
of Theorem 1.1 are not anabelian since they have a non-trivial centre. The
following refines Theorem 7 of [5]:

Theorem 1.3. Let X be a compact aspherical n-manifold with w1 anabelian.
If S¥ admits a k-semisimple Hopf-Rinow flow, then there is a component
B; C B and a natural almost-surjective homomorphism m1(B;) — (%)
such that either

(1) ker(mi(B;) = m(X)) # 1; or

(2) mx(B;) # 1 for some k > 2; or

(3) B; is homotopy equivalent to a finite covering of ¥ and k < n.

Here is an example that sharpens Theorem 1.3. Let X be a finite-volume
homogeneous space of PSLyR which is simultaneously a principal S! bundle
over a compact surface of genus more than one, S' < % 2 A. Let S* act on
S? by its standard action. Then S! acts freely on X x S? by the anti-diagonal
action. One obtains a smooth 4-manifold Q = ¥ x g1 $? with 71(Q) = 71 (A)
~which is anabelian-and 72(Q) = 72(S?). One has (see Theorem 8.6, too):

Theorem 1.4. There is a Hopf-Rinow action ¢ : R? x SQ — SO that is
3-semisimple with respect to (f,L,B) and B is homotopy equivalent to A.
The topological entropy of @ vanishes.

IThe definition of a Hopf-Rinow flow in [5] assumes that Q = {¢}. Inspection of the
generalized Kozlov-Taimanov Theorem (Lemma 15 of [5]) shows that the present extended
definition is precisely the hypothesis necessary for the proof.
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This is also the first example of a semisimple Hopf-Rinow action where m;
is anabelian—hyperbolic, in fact. Theorems 1.3 and 1.4 motivate

Question B: Is there a semisimple geodesic flow on a sphere bundle of
Theorem 1.4% on a compact aspherical manifold with w1 anabelian?
Background: This paper is part of a sequence of papers [8, 9, 3, 4, 5]
which try to answer the question: which manifolds admit an integrable ge-
odesic flow? Kozlov showed that if the geodesic flow is analytic and has an
additional analytic first integral, then the surface’s genus is at most one.
Taimanov [9] generalized Kozlov’s argument, and obtained three necessary
conditions for a compact real-analytic manifold to admit a real-analytically
integrable geodesic flow: (1) its fundamental group must be almost abelian;
(2) its first Betti number is at most its dimension; and (3) a third condi-
tion involving its rational cohomology ring. Taimanov introduced and used
the idea of geometric simplicity to prove these results. In [3], Taimanov’s
results are shown to fail in the smooth category. In [5], the present au-
thor generalized geometric simplicity to semisimplicity,? showed that the
“exotic” smoothly integrable geodesic flows of [3, 2] are 3-semisimple, and
that-modulo the geometrization conjecture-these are essentially the only
such examples in three dimensions. While these papers are largely concerned
with geodesic flows, the obstacles to integrability discovered in [8, 9, 5] are
obstacles to the integrabiliy of Hopf-Rinow flows. Given Theorem 1.2, it is
natural to explore Seifert 3-manifolds, hence Theorem 1.1.

Outline: Section 2 proves Theorem 1.3. Sections 3 and 4 outline the ge-
ometry of PSLoR required to construct the action ¢. Section 5 constructs
“action-angle” variables on (’s invariant tori and shows how these tori de-
generate. Section 6 proves the Hopf-Rinow property of ¢ by a topological
argument. Section 7 proves semisimplicity and completes the proof of The-
orems 1.1 & 7.4. Section 8 sketches a proof of Theorems 1.4 & 8.6.

2. THEOREM 1.3

Theorem 1.3. By Lemmas 15 and 19 of [5] there is a component B; C B
such that the induced map 71 (B;) — m1(X) is almost surjective. By passing
to a finite covering %, it can be assumed the map is onto. If cases 1 & 2 do

not hold, then 1 (B;) is isomorphic to 71(2) and B; is aspherical. Thus B;
and XY are homotopy equivalent. Hence dim B; > n, so k <n — 1. O

3. THE SETTING

Preamble. Let ¥ be a finite-volume homogeneous space of PSLoR. Since X
is a Seifert manifold, there is a topological surface A of genus more than one,
and a surjection p : 3 — A whose fibres are circles. The surface A contains
a discrete set of cone points which lie under the set S of “short” fibres
of p. The complement of p(S), Ay, is a smooth surface. The submersion
Pyt By — A, is a principal S' bundle, where &, = X — S. Let SS = Ss32
be the set of unit tangent vectors over S. SS is a disjoint union of S x S?
fibred in the obvious way by 2-tori which pinch to circles. SS may be empty,
of course.

2Rea.l-analytic integrability implies semisimplicity by Taimanov’s work.
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Let G = PSIuR, g = psleR, and let A < G be a lattice subgroup.
For notational convenience, the following conventions are adopted: the Lie
group H has Lie algebra b; elements in G are written as square-bracketed
matrices; elements in g are round-bracketed, genuine, matrices. From the
K AN-decomposition theorem, G is analytically diffeomorphic to Kx A xN
where K = SO,R /{+1},

ac{[z 2] el no{]3 1] yen).

The diffeomorphism is (k,a,n) +— kan [7]. Let B = AN be the Borel
subgroup of upper triangular elements in G. Let x(£) = det £ be the Cartan-
Killing form on g, and let K be the induced bi-invariant hamiltonian on T'G:

K(g,§) = det§, (3.1)
for all (g,&) € TG. For & € g, write
f:(bic b__ac>:aoz+bﬁ+c’}’, (3.2)

so that x(z) = ¢ — a® — b%2. The commutation relations between the basis
elements are [a, 8] = 2v, [a, 7] = =28, [5,7] = 2a. Define a hamiltonian A
by

h(€) = % (@ +8+(-vD?), h:goR, (3.3)

and let H : TG — R be the induced left-invariant hamiltonian. Relative to
the left trivialization of TG = G X g, Hamilton’s equations for H are

Xy : 6 = [§7Vh(§)]7 gilg = fa at (gag) € G x g.
Let Ej be the reduction of Xy to g. Its critical-point set is C = {{ €
g: &e€tor ¢c= %} One observes that on G x C, the flow of Xy is
(g,x) — (g exp(t€), ). This flow has zero entropy when x(§) > 0.

4. THE MOMENTUM MAP AND ADJOINT ORBITS

One observes that Xz enjoys the first integrals
Talg,§) = Adg€, Yxk(g,) =cv, (4.1)

the former (resp. latter) is the momentum map of G’s left action (resp. K’s
right action) on T'G. Note that H and K are both pull-backs of functions
ong®Eby Vg x Uk:

1
H = (¥g x ¥k)*h, where h = —r + A —V2+1,
K = (Tg x Uk)*k.

To carry through the construction behind Theorem 1.1, one must “push
down” ¥g x Uk to a quotient T(A\G). Since K’s right action, hence ¥k,
naturally descends to T(A\G), the difficulty lies in pushing down ¥g. It
is only possible to do this on a subspace of T'G. To wit, let g, = {{ € g :
k() > 0,c>0}and go = {£ €g : k(&) = 0,c > 0}. It will be shown
that Ug can be pushed down to A\G x gy C T(A\G). This is the most
important step in proving that the hamiltonian flows of H and K generate
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a 2-semisimple action of R? on H () C T(A\G). To demonstrate the
action’s Hopf-Rinow property, one must ensure that h_l(%) Ngo # 0.
Define a map

og:9. > G/KxRT,
by o(¢) = (uK,r) where u € B and r is the unique solution to & = 7 Ad,~.
Lemma 4.1. Let £ € gy. Then o(&) = (u,r) iff

T oy _
u = |:OZE_1:|’T: k(€), where =z = /¢, y = azr

1-
Consequently, o is an analytic diffeomorphism.

The proof of this lemma is a simple computation.

4.1. The Energy-Momentum Map.

Lemma 4.2. The image of Yg X Uk : G X gy — g4+ x & is {ED ey
r(§) < c}. The critical-value set is {{Dcy : r(€) = ¢} and the critical-point
set is G X B,

The proof is straightforward. It is convenient to define a map
J(g,) =Adg¢@c(¢) —r(€), J:Gxgy g @R (42)

Lemma 4.3. The map J is continuous and onto t, xR20. [Its critical-point
set is G x ¥, its critical-value set is g4 X0 and it is smooth on G X (g4 —84).

Clearly Lemma 4.2 implies Lemma 4.3. One sees that H,K|G X g, are
J-pullbacks of functions on g, x R2°.

5. “ACTION-ANGLE” VARIABLES

This section contructs a trivialization of J over g4 xR*. An “embedding”
is a smooth embedding.

Theorem 5.1. There is a continuous map & : KxKx g, xRZ0 - G x g,
such that

(1) KxKx g, x R20 2,6 x [+ N g+ x R20 is the projection map;
(2) K x K x gy x RT is an embedding;
(3) WK x1x gy x0 is an embedding.

Proof. First, a section (go,7,) of J will be constructed. Let ¢ = (£,s) €

A

g+ x R20 and let T: = J~1(¢). Then
(gm) €T: <  n=Adg1& & c(n) —r(n) =s. (¥

Let no = bB + ¢y where ¢ = s+ 7(£), b = /c® —r(£)?. These equations
define a map 7, : g x RZ% — g,. One defines g, by

90(8) = u(€) u(no(8)) ™,
which, like 7,, is continuous on g, x RZ% and smooth on g, x R*. It is
clear that (go(€),7,(€)) € Tt for all €.
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Second, the general solution to (*): Since K is abelian, (*) is G¢ x K-
invariant so (g = hgod~',n = Adgn,) solves (*) for all h € G¢, ¢ € K. Since
Ge = u(§)Ku(€) ™!, define

g = U(f)eu(é‘)_l 9o(€) ¢_la n= Adqbno(é)a

and let @ (0, ¢,€) = (9(0, ¢,€),n(4,€)). Property (*) proves (1).

Let us verify the claims (2-3). Assume that (g = higod; ', n = Ady,n,) is
a solution to (*) where h; € G¢ and ¢; € K.
Case 1: If s = 0, then 7, € € so 1 x K acts trivially on T@. However,
if g1 = ¢o = 1, then hy = hy. Thus @ is injective when restricted to
K x 1 x g4+ x 0, which proves (3).
Case 2: If s > 0, then 7, € € so KN Gy, is trivial. Thus ¢; = ¢2, hence
hi = hy. Thus @ is injective, which proves (2).

O

6. THE HopPF-RINOW PROPERTY

The hamiltonians H and K Poisson commute, so their flows generate an
action, ¢, of R? on T'G, and in particular on “the” unit-sphere bundle SG :=
H _1(%). This action descends to any quotient S(A\G) by left-invariance.
Let S = h™'(3) be the unit sphere in g, so that S(A\G) = (A\G) x S.
Let ¢ be the action induced T'(A\G) by ¢.

Lemma 6.1. Suppose that for each g € G, there is an é = (£,5) € S x R0
and an 1 € g4 such that (1,£),(g,n) € Te. Then the action ¢ : R? x
S(A\G) — S(A\G) is Hopf-Rinow.

Proof. Recall that ¢ is Hopf-Rinow over {A} C A\G, if, for each § € A,
there is a T € R? and ¢ € S such that ¢7((1,€)) = (6,n). Since the orbit
@rz2((1,€)) is the level set 7%, where é = (€, s) and s = ¢(€) —r(€), the lemma
is proven. O

Let £ = bB + ¢y, where b = cos x and ¢ = V2 +siny to ensure that £ € S.
Let s = ¢(€) — r(€), so that (1,&) € T:. Since (1,&) € Tz, this forces 7, = &,

go = 1 while u(¢) is diagonal with z* = ii%’; Thus,

(g,m) € T: implies g = ufu" ¢!,
and 7 = Ady¢ for some u € A and ¢,0 € K (see previous section). Since

limx_)g z =00 and hmx—)—% z = 0, it follows by continuity and Lemma, 6.1
that

Lemma 6.2. If the map f : Ax K x K — G, (u,0,¢) — ubu ¢!, is
surjective, then the action ¢ is Hopf-Rinow on S(A\G).

Theorem 6.3. The action ¢ : R? x S(A\G) — S(A\G) generated by the
hamiltonian flows of H and K is Hopf-Rinow.

Proof. By Lemma 6.2, it suffices to prove that f is onto.
Step 1. f is onto NK.

Since f(u, 8, ¢1¢do) = f(u, 0, 2)¢7 ", it suffices to prove that f is onto N.
Let 0 = exp(07y), ¢ = exp(¢py) and u = exp(uw). By a direct calculation
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f(u,0,¢) € N iff tan(¢p) = —exp(—2u) tan(@). So, f € N implies that the
upper right-hand corner entry of f, fi2, equals —2 cosh(2u) sin(8) cos(¢).

If = —Z, then tan(¢) = exp(—2u) and fi» = /2 cosh(2u) cos(¢). Thus
limy ;00 f12 = oco. If @ = 7, then by symmetry limy ;oo f1o = —o0o. By
continuity, f is onto N and hence NK.

Step 2. f is onto G — NK.

Let AL = exp(R*a) and G+ = NA_LK. The kan-decomposition shows

that G — NK is the union of its two connected components G and G_.
Let Ry be a connected component of f~}(G.) contained in Ay x K x K.
Let fy = f|Ry. It is claimed that fi is onto G1. To prove this, it suffices
to show that fi is a proper map of non-zero degree. This will be proven for
f+, as the proof for f_ is symmetric.
f, is proper. Let C C G, be a non-empty compact set. If f~1(C) is
empty, then it is compact. Otherwise, assume that f~1(C) is non-empty.
Let p, = (un, 0, ¢n) be a sequence in £ 1(C). It suffices to prove that p,
has a convergent subsequence.

By compactness of C' and K, one may suppose that, possibly after passing
to a subsequence, g, = f;(p,) converges to g € C and 6,, — 6, ¢, — ¢ in K.
1 cos(6,,) — exp(2u,,) sin(8,,)

| exp(—2uy,)sin(6,) cos(0y,)
where u, = exp(u,e), 6, = exp(0,7). If there is a subsequence u,, — oo,
then g¢p € N sog € NK and g € G—NK. Absurd. If there is a subsequence
u,, — 0, then g¢ € K so g € K. Absurd.

Therefore, u, is bounded away from 1 and oco. So, after passing to a

subsequence, it may be assumed that u,, — u # 1. Thenufu~'¢~! =g ¢ K,
which implies that @ # 1. This proves that p, = (up,0n, ¢,) contains a
convergent sequence converging to a limit in R,. Hence f; is proper.
f; has a non-zero degree. Let g = exp(a)exp(5y)exp(—a). Since g =
exp(2a) x exp(%7), it is clear that g € G4 (and R, is non-empty). Then
f(u,0,$) = g implies that the diagonal elements of g¢ are exp(+1)sin(¢),
while the diagonal elements of ufu~! are both cos(f). Thus sin(¢) = 0,
so ¢ = 1. Consequently @ = § mod m and u = 1. Thus #f;l(g) =1. A
straightforward computation shows that g is a regular value of f,.

Thus un,0pu,' — gé and u,0pu,,

O

Remark. Since the hamiltonian flow of H is not periodic, it is minimal on
T: for a residual set of é&. This fact, combined with Lemma 6.2, implies that
the hamiltonian flow of H on S(A\G) is Hopf-Rinow. Theorem 1.4 therefore
implies that any singular lagrangian fibration to which the hamiltonian flow
of H is tangent has a topologically wild singular set.

7. QUOTIENTS

Recall that A < G is a lattice subgroup of G; it acts on G/K with only
a discrete set of “cone points.” Let

gy ={fe€gsr : Ag=1},
which is the set of A-regular elements in g,. Under the diffeomorphism o
(Lemma 4.1), the complement of g, is homeomorphic to a discrete union of
lines. The A-stabilizer of a point in the complement of g, is conjugate to
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a subgroup of K, hence it is cyclic. The set of regular points, g’ , itself is a
smooth manifold on which A acts properly discontinuously and freely.

Let G, be the set of elements g in G such that ANgKg ! = 0. A\G/K
is an orbifold, while A\G,/K is the maximal smooth surface contained in
this orbifold. Of course, if A is torsion free, then G, = G and the above
distinctions are trivial.

In terms of the preamble to section 2, one has the following commutative
diagram of inclusions (—), homeo/diffeomorphisms (\,) and projections ()

A\G, A\G

L\Z N

by

' |
A\G,/K _j_> A\G/K |»

\A* s

FiGURE 1

7.1. J and its singularities. The map J (Equation 4.2) induces J : A\ G x
g+ — A\g, x RZ0 by equivariance. J is certainly continuous, and it inher-
its the singularities of J, but it may also have additional singularities which
we now investigate.

Fix ¢ = (£,8) € gy x R20, let € = (A€, s) and let T, = J~!(¢) be the
e-level set of J. Let

e T@ — T,

be the restriction of the canonical projection 7 : TG — T(A\G).

Assume that (g;,7;) € Tr and #:(g1,m1) = #e(g2,m2). This is possible iff

0= g291_1 € Ag and m=n=n and & = Adgn.

Hence T is diffeomorphic to Ag\Tg which, as a consequence of Theorem 5.1,
is diffeomorphic to either (A¢\G¢) x K or Ag\G¢. This proves that 7 is
(1) a finite covering map for all ¢;
(2) a diffeomorphism for all € = (¢,s) s.t. Ag = 1.

We wish to construct neighbourhoods of the level set T,. Since A is
conjugate to a discrete subgroup of K, it is a cyclic group of order n = |A¢|.
Let Z,, act on S' x D? via (0,z) — (0 + 2, eQi”%z) for integers p, g coprime
to n. The quotient (S x D?)/Z,, is a manifold with an S action, but there
are two types of S' orbits: the regular ones through (0, z) for z # 0; and a
short orbit through (0, 0).

Lemma 7.1. T, has a neighbourhood in T(A\G) diffeomorphic to
(1) S'x S'xR* if s >0 and Ay =1;
(2) S'x D2 xR3 if s =0 and A¢ = 1;
(3) (S' x D?)/Z, x S* xR? if s > 0 and A¢ # 1;
(4) (S' xD?)/Z, xR® if s=0 and A¢ £ 1;
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The level set T, is identified with S* x S x 0 in case 1, S* x 0 x 0 in cases
2 and 4, and S' x 0 x S' x 0 in case 3.

Proof. 1t is clear that there is a Ag-invariant neighbourhood Dy C Adgé
such that D¢ is a disk and u € D, implies that A, = 1 or p = £ The
neighbourhood D = R"D; of £ in gy is then diffeomorphic to R x D2
Combine this with & (Theorem 5.1) and the lemma follows. O

Corollary 7.2. The map J : A\G x gy — A\g, x RZ0 is continuous and
onto, and it is a smooth submersion on J~'(A\g". x RT).

7.2. Semisimplicity. Define

1
5)5

which are subsets of g Ugg. The image of Ug|G x D is Adg D, which is also
the image of Ug|G x S. Tt is clear that the image of J|G x D is Adg D x R=0.

The sphere S is the union of two open disks S; = {£ € S : :I:(c(&)—\/ii) > 0}

and the circle S N S, along which r vanishes. Let 72 : S1 — R be defined

by 7+(§) = %(1 + ) —r. These functions extend to Adg S+ by the adjoint

invariance of r. Define

D =Y, %]), S =Y

Biir={(s) : £€AdgSLNyg, s=r14(6) >0},

which is the set of elements in the image of J|G x St with trivial A-stabilizer.
Let By = Bl,_ U Bl,+.

<—S_ (shifted down for clarity)

FIGURE 2. A cutaway view of S and gg.

Similarly,
B=(AdgDnyg}) xR,

is the set of regular values of J|G x D which have trivial A-stabilizer.
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Finally, define L = J~'(B), f = J|L and L, = J~Y(B1), fi = J|L1.
The set L (resp. L1) is fibred by regular 2-tori; L is connected since B is
connected, while Ly is the union of two components Ll,i. Let T (resp. Fl)
be the complement of I, in G x D (resp. L; in G x S).

Lemma 7.3. ' & 'y are A-invariant, closed, nowhere dense, and real-
analytic.

Proof. 1t suffices to establish that L is an open, real-analytic, A-invariant
subset of G x D. It is clear that L is open and A-invariant. From the above
definition of B, it is apparent that

- 1
(g,m) € L < h(n) SE &ngt& Adgn€gl.

Since g, is a real-analytic set, it is clear that Lisa real-analytic set. O
Recall that S¥ = A\G x S and DX = A\G x D.

Theorem 7.4. The action ¢ of R? on S¥ (resp. DY) induced by the
hamiltonian flows of H and K is Hopf-Rinow and 2-semisimple with respect
to (f1,L1,B1) (resp. (f,L,B)) where

diffeo. diffeo.

L —=3%, xS' xR x Z, 3. xS xR x R20

L——
ifl ip*xz’da xidZ2 i ip*xidg XidRzo
By 2 A, xR x Z, B -2 A xR x RO

The singular set T'1 is diffeomorphic to (E (Stu SO)) USS. The action
©|I'y is conjugate to

1. the action of a mazimal compact subgroup of PSLoR. on X x S°;
2. the action of a unipotent subgroup of PSLeR on ¥ x S*;
3. the action of a 2-torus on SS.

Thus, all 1-parameter subgroups of ¢ have zero topological entropy. The
fibration f1 (f) is non-trivial iff A is cocompact iff the Chern class of p is
non-zero.

Proof. The diffeomorphism o (Lemma 4.1) induces A-equivariant diffeomor-
phisms

B G,/Kx(0,V2+1] xR, B i— G,/Kx(0,V2+1).

The A-equivariance of these diffeomorphisms induces the commutative di-
agram in Figure 2. A-equivariance implies that Figure 3 is a commutative
diagram of T2-fibre bundles. The commutative diagrams in Figures 2 and
3 show that the horizontal maps in Figure 3 are homotopy equivalences.
These facts, along with Lemma 7.3, suffice to prove the diagrams in the
present Theorem and the 2-semisimplicity of .

Assume that (Ag,n) € I';. There are three cases to be examined: either
ne€SNE orn € SNgoor Ag # 1 where { = Adyn. Along £, the
hamiltonians h and k are dependent, hence the action ¢|G X € is a time-
change of K. Since S N€, = S°, this proves assertion part 1.
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G./K x (0,v/2+1)

I\A | -

¢ G,/K x (0,v/2+1] xR*T

B+ — A\G,/K x (0,v/2+1)
\ \
B A\G,/K x (0,/2+1] xRT
FIGURE 3
G* <« K le N incl. IA/
‘, s ‘ \f
TN, incl. A
G./K l B+ d l B B
A G* <K L incl.
\ E L ~
\ fl,i\ . f\
A\G*/K Bl,:t incl. B.
FIGURE 4

Along S Ngg = S', the hamiltonians h and x are dependent. For each
n € SNgp the action P|G x 7 is generated by the unipotent group exp(Rn).
This proves part 2.

If A¢ # 1, then Lemma 7.1, cases 3 & 4, provide a J-saturated neigh-
bourhood of the J-level set T, where e = J(Ag,n). It is clear that the action
¢|T¢ is transitive on T¢. Since T¢ is a torus, this proves part 3.

Since the horizontal maps in Figure 3 are homotopy equivalences, the
monodromy of the T2-fibre bundle f (resp. fi 1) is trivial while the Chern
class of f (resp. f1,+) pulls back to the Chern class of the principal T2
bundle

K xK — A\G, xK = A\G, /K.

The Chern class of this fibre bundle generates H2(A\G,/K; Q). The latter
is non-trivial iff A is cocompact (whence G = Gy). O

8. FURTHER CONSTRUCTIONS

8.1. Generalities. This section proves a couple results concerning semisim-
plicity and its behaviour under reduction. More general results are certainly
true, but the present ones suffice for this paper. The first observation is el-
ementary:

Lemma 8.1. The product of semisimple (resp. Hopf-Rinow) actions is
semisimple (resp. Hopf-Rinow).

Let ¢ : R™ x M — M be a k-semisimple action with respect to (f, L, B).
Let T™ be an n-torus that acts freely on M. Assume that T" preserves
the map f. Let m : M — M' = M/T" be the projection map of this
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principal-fibre bundle. One has the induced structure on M':

TR

Tk'(—>L/—>>B

where k' = k —n, L' = L/T™ and f' is the map induced by f. Since L is
T"-invariant, its complement I is also. Let I = M’ — L' be the projection
of I'. Finally, let ¢’ : R™ x M’ — M’ be the induced action.

Lemma 8.2. If " is an analytic set and T" acts analytically on M, then
o' is k'-semisimple with respect to (f', L', B').

It suffices to prove that I is an analytic set. This follows from a simple
averaging argument.
Let

El( E )EQ

N

21<—>21X22<—‘22

be a commutative diagram of natural inclusions. Let ¢ : R™ x E — E be
an action such that E; is an invariant set for ¢ = 1,2. Let ¢; be the action
on Ei.

Lemma 8.3. If v; is Hopf-Rinow over q;, then ¢ is Hopf-Rinow over q =
(q1,2)-

The proof is obtained by including ¥; via ¢ — (g, ¢2) and similarly for
.

Assume that a compact Lie group T acts freely on ¥ and hence on the
total space E of a fibre bundle over X. Let

E—E/T

i

5 — > 3/T

be the commutative diagram of projection maps. If ¢ is a T-equivariant
action, then there is a well-defined action ¢’ on E/T.

Lemma 8.4. If ¢ : R™ X E — E is Hopf-Rinow, then the induced action
¢ :R™ x E/T — E/T is Hopf-Rinow.

8.2. A further example. In this section, A is a torsion-free discrete group;
K acts freely on A\G.

Let TS? = {(v,z) e R*xR? : |z| =1, (v,z) = 0} be the tangent bundle
of §2? and let SO(3) act on T'S? in its natural manner. The momentum map
is

1
Uso(3) (v, ) = i(xv' —vz'), Uso(3) T5% = 50(3).
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Let {u;} be an orthonormal basis of so(3) with respect to the trace form.
Let p € so(3) and define the functions

B0 = {pom)s Eal) = 5 pa)? + (s 1s)?)

where (o, o) = Tr(e.e) is the trace form. These functions Poisson commute
relative to the canonical Poisson structure on so(3), and since WUgq3) is a
Poisson map, the pullbacks

1
Fy = (v,p17) = €1 0 Ug0(3), F = §(<Uall2$>2 + (v, p3w)?) = bz 0 g3

also Poisson commute (here (,) is the standard inner product).

The function F; can be viewed as the momentum map of the action of the
group exp(Ru1) € SO(3). This group can, and will henceforth, be identified
with K = SO(2). A straightforward computation shows that

Lemma 8.5. The critical-point set of the map F = (F|,F) : TS? —
R x R0 is F;1(0). The critical-value set is R x 0. The regular fibres
of F' are tori.

Let Q((Ag,&) x (v,z)) = H(Ag, &) + Fy(v,z), which is a K-invariant
fibre-wise positive semi-definite quadratic form. Let E be the subbundle of
T(A\G x 5?) defined by (Ag,&,v,z) € E iff

a’ + b’ + (C - \/5)2 + <IUa:u'2"E>2 + <U7u3$>2 =1, andc= <’U,,u,1.’,C>.

The subbundle E is the intersection of Qfl(%) with the zero level of the
momentum map of K’s anti-diagonal action on A\G x S2. It is clear that
A\G x S embeds naturally in E. The functions H, K, F» induce a hamilton-
ian action of R? on T(A\G x S?). This action is tangent to E, it is Hopf-
Rinow, 4-semisimple (with an analytic singular set) and it is K-invariant.
We can therefore apply Lemmas 8.1-8.4 to conclude that the induced action
on E/K is Hopf-Rinow and 3-semisimple. Observe that E/K is isomorphic
to the unit-tangent sphere bundle of A\G xx S2. The diagram in Theo-
rem 8.6 is a simple consequence of Section 6 and Lemma 8.2. This proves
Theorem 8.6 and Theorem 1.4.

Theorem 8.6. Let ¢ : R3 x SQ — SQ be the action induced by the hamil-
tonians H,K, F5. Then ¢ is Hopf-Rinow and 3-semisimple with respect to
(f,L,B) where

iffeo.
L 2% 5 o T2 « R3

if ipx Zng
diffeo.
B——AxR? commutes.

Remark 1. This construction works for any action of K on A\G x §?
that is of the form 6.(Ag,z) = (Ag6,0"z), where n € Z — 0. The manifold
Q) = A\G xk S? contains a canonical C!-bundle over A\G /K. If the Chern
class of this C'-bundle is even, then ( is trivial as an S2-bundle; otherwise
it is not trivial.
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Remark 2. This construction also works for higher-dimensional products
A\G x §™. When m is odd (say m = 3) there are free actions of K on this
product when A is discrete but not necessarily torsion-free.
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