The University of Edinburgh 2010

School of Mathematics
(U01457)

Geometry \& Convergence

Problem Sheet 3

Assessment 3 due by 12.10 on Friday, 12 February 2010.

Tutorial 3 on Tuesday, 9 February 2010.

Pretutorial questions: 2, and 7 .
Tutorial questions: 3 , and 5 .
Handin questions: 1,4 , and 8.
$\left(2^{* *}\right)$ (i) Let $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ be a fixed vector in \mathbb{R}^{3}. Show that for $\mathbf{x}=\langle x, y, z\rangle$, the map f from \mathbb{R}^{3} to \mathbb{R}^{3} defined by $f(\mathbf{x})=\mathbf{a} \times \mathbf{x}$ is a linear map.
(ii) Let $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ be fixed vectors in \mathbb{R}^{3}. Show that for $\mathbf{x}=\langle x, y, z\rangle$, the maps f and g from \mathbb{R}^{3} to \mathbb{R}^{3} defined by $f(\mathbf{x})=\mathbf{a} \times(\mathbf{b} \times \mathbf{x})$ and $g(\mathbf{x})=(\mathbf{a} \times \mathbf{b}) \times \mathbf{x}$ are both linear maps.
(iii) Find the 3×3 matrices A, B such that $f(\mathbf{x})=A \mathbf{x}$ and $g(\mathbf{x})=$ $B \mathbf{x}$.
What are these matrices when $\mathbf{a}=\langle 1,0,3\rangle$ and $\mathbf{b}=\langle 2,1,1\rangle$?
$\left(3^{*}\right) \quad$ (i) Find a 3×3 orthogonal matrix all of whose entries are $\pm 1 / 3$ or $\pm 2 / 3$.
[Recall that rows have length 1, and are orthogonal to each other.]
(ii) Find a 4×4 orthogonal matrix all of whose entries are $\pm 1 / 2$.
(5*) For the rotation map $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and the reflection map $M_{\phi}=\left[\begin{array}{cc}\cos \phi & \sin \phi \\ \sin \phi & -\cos \phi\end{array}\right]$ verify by matrix multiplication that $M_{\phi} R_{\theta}=$ $M_{\phi-\theta}$ and that $R_{\theta} M_{\phi}=M_{\phi+\theta}$. Use these identities to show, without any further matrix multiplication that $R_{-\theta} M_{\phi} R_{\theta}=M_{\phi-2 \theta}$.
$\left(7^{* *}\right)$ Find the four points of intersection of the two ellipses

$$
E_{1}: \frac{y^{2}}{81}+x^{2}=1, \quad \quad E_{2}: y^{2}+\frac{x^{2}}{16}=1
$$

