The University of Edinburgh 2010

School of Mathematics (U01457)

 (7^{**}) Find the four points of intersection of the two ellipses

$$E_1: \frac{y^2}{81} + x^2 = 1,$$
 $E_2: y^2 + \frac{x^2}{16} = 1$

Geometry & Convergence Problem Sheet 3

Assessment 3 due by 12.10 on Friday, 12 February 2010. Tutorial 3 on Tuesday, 9 February 2010.

Pretutorial questions: 2, and 7.

Tutorial questions: 3, and 5.

Handin questions: 1, 4, and 8.

- (2^{**}) (i) Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ be a fixed vector in \mathbb{R}^3 . Show that for $\mathbf{x} = \langle x, y, z \rangle$, the map f from \mathbb{R}^3 to \mathbb{R}^3 defined by $f(\mathbf{x}) = \mathbf{a} \times \mathbf{x}$ is a linear map.
 - (ii) Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ be fixed vectors in \mathbb{R}^3 . Show that for $\mathbf{x} = \langle x, y, z \rangle$, the maps f and g from \mathbb{R}^3 to \mathbb{R}^3 defined by $f(\mathbf{x}) = \mathbf{a} \times (\mathbf{b} \times \mathbf{x})$ and $g(\mathbf{x}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{x}$ are both linear maps.
 - (iii) Find the 3×3 matrices A, B such that $f(\mathbf{x}) = A\mathbf{x}$ and $g(\mathbf{x}) = B\mathbf{x}$.

What are these matrices when $\mathbf{a} = \langle 1, 0, 3 \rangle$ and $\mathbf{b} = \langle 2, 1, 1 \rangle$?

- (3*) (i) Find a 3 × 3 orthogonal matrix all of whose entries are ±1/3 or ±2/3.
 [Recall that rows have length 1, and are orthogonal to each other.]
 - (ii) Find a 4×4 orthogonal matrix all of whose entries are $\pm 1/2$.

(5*) For the rotation map $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and the reflection map $M_{\phi} = \begin{bmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{bmatrix}$ verify by matrix multiplication that $M_{\phi}R_{\theta} = M_{\phi-\theta}$ and that $R_{\theta}M_{\phi} = M_{\phi+\theta}$. Use these identities to show, without any further matrix multiplication that $R_{-\theta}M_{\phi}R_{\theta} = M_{\phi-2\theta}$.