The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 2

Assessment 2 due by 12.10 on Friday, 29 January 2010. Tutorial 2 on Tuesday, 26 January 2010.

Pretutorial questions: 2, and 4.

Tutorial questions: 7, 8, and 16.

Handin question: 3.

- (2^{**}) (a) Which points in the plane \mathbb{R}^2 are equidistant from the *x* and *y*-axes?
 - (b) Find the point that is equidistant from the x-axis, the y-axis and the line 3x + 4y = 36.
 - (c) What is the largest radius of a circle that will fit inside the triangle specified by the three lines in (b)? (This circle is called the *incircle* of the triangle, and its centre is the *incentre* of the triangle).
- (4^{**}) If $\mathbf{a} \neq 0$ and $\mathbf{a} \times \mathbf{b} = 0$, prove that \mathbf{b} is a scalar multiple of \mathbf{a} .
- (7^{*}) Solving the equation $\mathbf{a} \times \mathbf{x} = \mathbf{b}$, for given vectors \mathbf{a}, \mathbf{b} in \mathbb{R}^3 .
 - (a) Show that if $\mathbf{a} \times \mathbf{x} = \mathbf{b}$ then $\mathbf{a} \cdot \mathbf{b} = 0$. We assume that this condition holds for the rest of the question.
 - (b) Use Q4 above to show that $-(\mathbf{a} \times \mathbf{b})/|\mathbf{a}|^2$ is a solution of $\mathbf{a} \times \mathbf{x} = \mathbf{b}$.
 - (c) If $\mathbf{x} = \mathbf{u} (\mathbf{a} \times \mathbf{b})/|\mathbf{a}|^2$ is another solution, show that $\mathbf{u} \times \mathbf{a} = 0$. Hence use Q3 above to write down the general solution \mathbf{x} to $\mathbf{a} \times \mathbf{x} = \mathbf{b}$.

[In this question we've seen that the solution set $\{\mathbf{x} : \mathbf{a} \times \mathbf{x} = \mathbf{b}\}$ is either empty (when $\mathbf{a} \cdot \mathbf{b} \neq 0$) or a line. Note the contrast with the equation $\mathbf{a} \cdot \mathbf{x} = b$, whose solution set is a plane.]

- (8*) (Converse to question 6). Show that a given line $\mathbf{w} + t\mathbf{a}$ in \mathbb{R}^3 is the solution set of the equation $\mathbf{a} \times \mathbf{x} = \mathbf{a} \times \mathbf{w}$.
- (16*) For the plane given parametrically by (t, u) = (3, 0, 0) + t(-3, 4, 0) + u(-3, 0, 6) write down three points on the plane that don't lie on one line. Use these to find a normal to the plane. Find the distance of the point (1, 2, 3) from the plane.