The University of Edinburgh 2010

School of Mathematics
Geometry \& Convergence

Problem Sheet 1

Assessment 1 due by 12.10 on Friday, 15 January 2010.

Tutorial questions: 4,6 , and 14 .
Handin questions: 1 , and 3.
(4*) Find the component of $\mathbf{c}=\langle 2,1\rangle$ in the direction $\mathbf{v}=\langle 4,1\rangle$. Hence write \mathbf{c} in the form $\mathbf{c}=\lambda \mathbf{v}+\mathbf{w}$, where $\mathbf{v} \cdot \mathbf{w}=0$.
Check also that \mathbf{w} itself is the component of \mathbf{c} in the direction \mathbf{w}.
Draw a picture to illustrate the question.
(6*) Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle, \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be two independent vectors in \mathbb{R}^{2} (i.e. neither is a multiple of the other), and put $\mathbf{u}^{\perp}=\left\langle-u_{2}, u_{1}\right\rangle, \mathbf{v}^{\perp}=$ $\left\langle-v_{2}, v_{1}\right\rangle$.
Show that $\mathbf{u}^{\perp} \cdot \mathbf{u}=\mathbf{v}^{\perp} \cdot \mathbf{v}=0$.
Writing $\mathbf{x} \in \mathbb{R}^{2}$ as a linear combination $\lambda \mathbf{u}+\mu \mathbf{v}$ of \mathbf{u} and \mathbf{v}, show by taking appropriate dot products that

- $\lambda=\left(\mathbf{v}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{v}^{\perp} \cdot \mathbf{u}\right) ;$
- $\mu=\left(\mathbf{u}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{u}^{\perp} \cdot \mathbf{v}\right)$.

Now try this procedure with the example $\mathbf{u}=\langle 2,3\rangle, \mathbf{v}=\langle 2,-1\rangle$ and $\mathbf{x}=\langle 1,1\rangle$. Check that indeed $\mathbf{x}=\left(\mathbf{v}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{v}^{\perp} \cdot \mathbf{u}\right) \mathbf{u}+\left(\mathbf{u}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{u}^{\perp}\right.$. $\mathbf{v)} \mathbf{v}$ for this example.
(6 $\frac{1}{2}$) In Q6, explain why $\mathbf{v}^{\perp} \cdot \mathbf{u}$ (and, similarly, $\mathbf{u}^{\perp} \cdot \mathbf{v}$) is nonzero.
$\left(14^{*}\right)$ Consider the points $A=(1,1,1), B=(1,-1,-1), C=(-1,1,-1)$, $D=(-1,-1,1)$ in \mathbb{R}^{3}.
(a) Show that they are all equidistant from the origin $O=(0,0,0)$. What is this distance?
(b) Show that they are equidistant from each other, and so form the vertices of a regular tetrahedron. What is this distance?
(c) Find the angle $\angle A O B$.
(This is the so-called tetrahedral angle, and is e.g. the angle subtended at the carbon atom by two hydrogen atoms in a methane molecule CH_{4}.)

