The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 1

Assessment 1 due by 12.10 on Friday, 15 January 2010.

Tutorial questions: 4, 6, and 14.

Handin questions: 1, and 3.

(4*) Find the component of $\mathbf{c} = \langle 2, 1 \rangle$ in the direction $\mathbf{v} = \langle 4, 1 \rangle$. Hence write \mathbf{c} in the form $\mathbf{c} = \lambda \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \cdot \mathbf{w} = 0$. Check also that \mathbf{w} itself is the component of \mathbf{c} in the direction \mathbf{w} .

1

Draw a picture to illustrate the question.

(6*) Let $\mathbf{u} = \langle u_1, u_2 \rangle$, $\mathbf{v} = \langle v_1, v_2 \rangle$ be two independent vectors in \mathbb{R}^2 (i.e. neither is a multiple of the other), and put $\mathbf{u}^{\perp} = \langle -u_2, u_1 \rangle$, $\mathbf{v}^{\perp} = \langle -v_2, v_1 \rangle$.

Show that $\mathbf{u}^{\perp} \cdot \mathbf{u} = \mathbf{v}^{\perp} \cdot \mathbf{v} = 0.$

Writing $\mathbf{x} \in \mathbb{R}^2$ as a linear combination $\lambda \mathbf{u} + \mu \mathbf{v}$ of \mathbf{u} and \mathbf{v} , show by taking appropriate dot products that

• $\lambda = (\mathbf{v}^{\perp} \cdot \mathbf{x})/(\mathbf{v}^{\perp} \cdot \mathbf{u});$ • $\mu = (\mathbf{u}^{\perp} \cdot \mathbf{x})/(\mathbf{u}^{\perp} \cdot \mathbf{v}).$

Now try this procedure with the example $\mathbf{u} = \langle 2, 3 \rangle$, $\mathbf{v} = \langle 2, -1 \rangle$ and $\mathbf{x} = \langle 1, 1 \rangle$. Check that indeed $\mathbf{x} = (\mathbf{v}^{\perp} \cdot \mathbf{x})/(\mathbf{v}^{\perp} \cdot \mathbf{u})\mathbf{u} + (\mathbf{u}^{\perp} \cdot \mathbf{x})/(\mathbf{u}^{\perp} \cdot \mathbf{v})\mathbf{v}$ for this example.

- $(6\frac{1}{2})$ In Q6, explain why $\mathbf{v}^{\perp} \cdot \mathbf{u}$ (and, similarly, $\mathbf{u}^{\perp} \cdot \mathbf{v}$) is nonzero.
- (14*) Consider the points A = (1, 1, 1), B = (1, -1, -1), C = (-1, 1, -1), D = (-1, -1, 1) in \mathbb{R}^3 .

- (a) Show that they are all equidistant from the origin O = (0, 0, 0). What is this distance?
- (b) Show that they are equidistant from each other, and so form the vertices of a regular tetrahedron. What is this distance?
- (c) Find the angle $\angle AOB$.

(This is the so-called *tetrahedral angle*, and is e.g. the angle subtended at the carbon atom by two hydrogen atoms in a methane molecule $CH_{4.}$)