The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 5: Solutions

Assessment 5 due by 12.10 on Friday, 12 March 2010. Tutorial 5 on Tuesday, 9 March 2010.

Pretutorial questions: 3, and 12.

Tutorial questions: 4, 5, 6, and 11.

Handin questions: 1, 2, 7, and 10.

 (1^{\dagger}) Prove by induction that, for fixed $a \neq 1$ and n = 1, 2, ...

$$1 + a + a^{2} + \ldots + a^{n-1} = \frac{a^{n} - 1}{a - 1}.$$

Solution.

Base Case: For n = 0, we have $LHS_n = 1$ and $RHS_n = (a-1)/(a-1) = 1$ [mark: 1]. Induction case: Assume that, for a fixed $n \ge 1$, the $LHS_n = RHS_n$ [mark: 1]. Then

$$LHS_{n+1} = (1 + a + \dots + a^{n-1}) + a^n$$

= $\frac{a^n - 1}{a - 1} + a^n$, by induction hypothesis
= $\frac{a^{n+1} - 1 + a^{n+1} - a^n}{a - 1}$
= $\frac{a^{n+1} - 1}{a - 1}$.
= RHS_{n+1} [mark: 1]

This proves, by the principle of mathematical induction, that the formula is true for all $n \in \mathbb{N}$. Total Marks for Question: 3.

 (2^{\dagger}) Define a_n (n = 0, 1, 2, ...) by $a_0 = 1$ and $a_{n+1} = a_n + 2^n + 1$. Show by induction that

$$a_n = 2^n + n$$
 $(n = 0, 1, 2, ...).$

Solution.

Base Case: For the base case of n = 0, we have $LHS_n = a_0 = 1$ and $RHS_n = 2^0 + 0 = 1$ [mark: 1].

Induction Case: Assume that, for a fixed $n \ge 0$, the $LHS_n = RHS_n$ [mark: 1]. Then

$$LHS_{n+1} = a_{n+1} = a_n + 2^n + 1$$

= $(2^n + n) + 2^n + 1$ by induction hypothesis
= $2^{n+1} + (n+1)$
= RHS_{n+1} . [mark: 1]

This proves, by the principle of mathematical induction, that the formula is true for all $n \in \mathbb{N}$. Total Marks for Question: 3.

(3^{**}) A certain algorithm takes time T(n) to sort a set of 2^n elements, and time $T(n+1) = T(n) \times n^2$ to sort a set of 2^{n+1} elements. Show by induction that

$$T(n) = ((n-1)!)^2 T(1)$$
 $(n = 1, 2, ...).$

Solution.

Base Case: for n = 1, since 0! = 1, we have $LHS_n = RHS_n$. Induction Step: Assume that for a fixed $n \ge 1$, the above equation is true. Then

$$T(n+1) = T(n) \times n^2$$
 by definition of $T(n)$
= $n^2 \times ((n-1)!)^2 \times T(1)$ by induction hypothesis
= $(((n+1)-1)!)^2 T(1)$,

which proves that $LHS_{n+1} = RHS_{n+1}$. The principle of mathematical induction implies that the identity holds for all $n \in \mathbb{N}$.

(4*) Prove by induction that $3^n - 2n^2 - 1$ is divisible by 8, for n = 1, 2, ...

Solution.

Base Case: When n = 1, we have $3^n - 2n^2 - 1 = 0 \equiv 0 \mod 8$, hence is divisible by 8. Induction step: Assume that $3^n - 2n^2 - 1 \equiv 0 \mod 8$. Then

$$3^{n+1} - 2(n+1)^2 - 1$$

= 3(3ⁿ - 2n² - 1) + 4n² + 4n
= 4n(n+1) mod 8 by the induction hypothesis
= 0 mod 8, one of n or n + 1 is even.

This proves, by the principle of mathematical induction, that $3^n - 2n^2 - 1 \equiv 0 \mod 8$ for all $n \in \mathbb{N}$.

(5*) The Fibonacci numbers f_n are defined by $f_1 = f_2 = 1$ and $f_{n+1} = f_n + f_{n-1}$ for $n \ge 2$. Prove by strong induction that

$$\phi^{n-2} \le f_n \le \phi^n \qquad (n = 1, 2, \ldots),$$

where $\phi = \frac{1}{2}(1 + \sqrt{5})$, the so-called *Golden Ratio*. [Use the fact that $1 + \phi = \phi^2$.]

Solution.

Base Case: Let n = 1. Then,

$$4 \le 5 \le 9 \qquad \implies 2 \le \sqrt{5} \le 3$$
$$3 \le \sqrt{5} + 1 \le 4 \qquad \implies \frac{3}{2} \le \frac{\sqrt{5} + 1}{2} \le 2$$

Thus, with n = 1,

$$\phi^{-1} = \frac{2}{\sqrt{5}+1} \le \frac{1}{2} < 1 = f_1 \le \frac{3}{2} \le \frac{\sqrt{5}+1}{2} = \phi^1$$

Induction step: Assume the inequality is true for all integers between 1 and some fixed $n \ge 1$. Then,

$$f_{n+1} = f_n + f_{n-1} \qquad \text{by definition of } f_{n+1}$$
$$\geq \phi^{n-2} + \phi^{n-3} \qquad \text{by induction hypothesis}$$
$$\geq \phi^{n-3}(1+\phi)$$
$$= \phi^{(n+1)-2}$$

which proves the LHS of the inequality for n + 1. While

$$f_{n+1} = f_n + f_{n-1} \qquad \text{by definition of } f_{n+1}$$
$$\leq \phi^n + \phi^{n-1} \qquad \text{by induction hypothesis}$$
$$\leq \phi^{n-1}(1+\phi)$$
$$= \phi^{(n+1)}$$

which proves the RHS of the inequality for n + 1.

Therefore, by the principle of (strong) mathematical induction, the inequalities are true for all $n \in \mathbb{N}$.

(6*) Let $\lfloor x \rfloor$ be the *floor* of x, i.e. the largest integer $\leq x$. Prove by induction that

$$n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor \qquad (n = 1, 2, \ldots).$$

Solution.

Base Case: For n = 1, we have $\lfloor n/2 \rfloor = 0$ and $\lfloor (n+1)/2 \rfloor = 1$ which shows that $LHS_n = RHS_n$ for n = 1.

Induction Step: Let us observe that $\lfloor x+1 \rfloor = \lfloor x \rfloor + 1$ for all real numbers x, so $\lfloor (n+2)/2 \rfloor = \lfloor n/2 \rfloor + 1$ for all $n \in \mathbb{N}$. Assume that the equation is true for some fixed $n \ge 1$. Then

$$n+1 = \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor + 1 \qquad \text{by induction hypothesis}$$
$$= \left\lfloor \frac{n+2}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor, \quad \text{by the observation.}$$

By the principle of mathematical induction, the proves the identity for all $n \in \mathbb{N}$.

 (7^{\dagger}) What is wrong with the following inductive argument:

"**Theorem.** Let x > 0 be fixed. Then $x^{n-1} = 1$ for n = 1, 2, ...*Proof.* If n = 1 then $x^{1-1} = x^0 = 1$, so result true for n = 1. Assuming the result true for 1, 2, ..., we have

$$x^{(n+1)-1} = x^n = x^{n-1} \times x^{n-1}/x^{n-2} = 1 \times 1/1 = 1,$$

so that the result holds for n + 1 as well." (Knuth)

Solution.

This is a subtle flaw. Let P(n) be the statement " $x^{n-1} = 1$ ". The proof has verified P(1) is true. The inductive step then proves that if P(n) and P(n-1) are true, then P(n+1) is true. However, in mathematical induction, we are only allowed to assume P(n) in order to prove P(n+1).

In strong mathematical induction, we are allowed to assume $P(1), \dots, P(n)$ in order to prove P(n + 1). In particular, we are only allowed to assume P(1) to prove P(2). However, above we assume P(0) and P(1) to prove P(2) [marks: 2]. Total Marks for Question: 2.

- (8) Show that if, for some proposition P(n),
 - (a) P(1) is true
 - (b) P(n) true $\implies P(2n)$ and P(2n+1) both true (n = 1, 2, ...)

then P(n) is true for $n = 1, 2, \ldots$

[Use induction on the length of the binary representation of n].

(9) (Esoteric variant of induction.) Show that if, for some statement $P_2(n)$,

(a) $P_2(1)$ is true

(b) $P_2(n)$ true $\implies P_2(2n)$ true (n = 1, 2, ...)(c) $P_2(n+1)$ true $\implies P_2(n)$ true (!) (n = 1, 2, ...)

then $P_2(n)$ is true for $n = 1, 2, \ldots$

Convergence of sequences and series

(10[†]) Define a sequence $(t_n)_{n \in \mathbb{N}}$ by $t_n = \frac{2n+1}{n^3}$. Prove that this sequence tends to 0 as $n \to \infty$.

Solution.

Rough Work. Let us obtain a simple upper bound on $|t_n - 0|$:

$$|t_n - 0| \le \frac{1}{n^2} \times \frac{2 + 1/n}{1} \quad \text{dividing top/bottom by } n/n^3$$
$$\le \frac{3}{n^2} \qquad \text{since } n \ge 1, \ 1/n \le 1$$
$$\le \frac{1}{n} \qquad \text{for } n \ge 3.$$

[mark: 1] End of Rough Work

Proof. Let $\epsilon > 0$ be given. Choose N to be the largest of 3 and $\epsilon^{-1} + 1$. If $n \ge N$, then

$$|t_n - 0| \le \frac{1}{n}$$
 by rough work, since $n \ge 3$
 $\le \frac{1}{N}$ since $n \ge N$
 $< \epsilon$.

By the definition of convergence, t_n converges to 0 [mark: 1].

Total Marks for Question: 2.

(11^{*}) Define a sequence
$$(a_n)_{n \in \mathbb{N}}$$
 by $a_n = \frac{2n^2 - 1}{n^3 - 2}$. Prove that this sequence tends to 0 as $n \to \infty$.

Solution.

Since $a_n \sim 2/n$ for large n, it should converge to 0.

Rough Work. Let us obtain a simple upper bound on $|a_n - 0|$:

$$|a_n - 0| = \left| \frac{2n^2 - 1}{n^3} - 2 \right|$$

$$\leq \left| \frac{2n^2}{\frac{1}{2}n^3} \right| \qquad \text{since } |n^3 - 2| = \frac{1}{2}n^3 + (\frac{1}{2}n^3 - 2)$$

$$> \frac{1}{2}n^3 \text{ for } n \ge 2$$

$$\leq \frac{2n^2}{\frac{1}{2}n^3} \qquad \text{since } n \ge 1$$

$$\leq \frac{4}{n} \qquad \text{for } n \ge 2.$$

So we want $4/n < \epsilon, \, {\rm i.e.} \ n > 4/\epsilon.$ End of Rough Work

Proof. Let $\epsilon > 0$ be given. Choose N to be the largest of 2 and $4\epsilon^{-1} + 1$. If $n \ge N$, then

$$|a_n - 0| \le \frac{4}{n} \qquad \text{by rough work, since } n \ge 2$$
$$\le \frac{4}{N} \qquad \text{since } n \ge N$$
$$< \epsilon \qquad \text{since } 4/N < 1/(\epsilon^{-1} + 1/4) < \epsilon.$$

By the definition of convergence, a_n converges to 0.

(12**) Prove that the sequence $(t_n)_{n \in \mathbb{N}}$ defined by $t_n = \frac{2n + \sin n}{3n}$ tends to a limit as $n \to \infty$.

Solution.

Since $t_n = \frac{\sin n}{3n} + \frac{2}{3}$, and $|\sin n|$ is bounded, t_n should converge to 2/3.

Rough Work.

$$\left| t_n - \frac{2}{3} \right| = \frac{|\sin n|}{3n}$$

$$\leq \frac{1}{3n} \qquad \text{since } |\sin x| \leq 1, \ x \in \mathbb{R}$$

$$\leq \frac{1}{n}.$$

End of Rough Work

Proof. Let $\epsilon > 0$ be given. Choose N to equal $\epsilon^{-1} + 1$ so that $1/N < \epsilon$. Then, if $n \ge N$,

$$t_n - \frac{2}{3} \bigg| \le \frac{1}{n}$$
 by rough work
 $\le \frac{1}{N}$ since $n \ge N$
 $< \epsilon$.

This proves that t_n converges to 2/3.

- (13) Suppose that the sequence $(a_n)_{n \in \mathbb{N}}$ tends to the limit A, while the sequence $(b_n)_{n \in \mathbb{N}}$ tends to B. Prove that the sequence $(a_n + b_n)_{n \in \mathbb{N}}$ tends to A + B.
- (14) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ tends to the limit A, while the sequence $(b_n)_{n\in\mathbb{N}}$ tends to B. Prove that the sequence $(a_n \cdot b_n)_{n\in\mathbb{N}}$ tends to AB.
- (15) Suppose that the sequence $(a_n)_{n \in \mathbb{N}}$ tends to a limit A, and the sequence $(b_n)_{n \in \mathbb{N}}$ tends to a limit B. Does the sequence $a_1, b_1, a_2, b_2, \ldots, a_n, b_n, \ldots$ tend to a limit?

Page 5/5

(16) Prove that the series
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 converges.

(17) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n+100000}$ diverges.

- (18) (Harder) You know (e.g. from the Group Theory course) that the rationals are countable. This means that there is a sequence $(t_n)_{n \in \mathbb{N}}$ that contains each rational number exactly once. (In fact there are many such sequences, obtained by re-ordering $(t_n)_{n \in \mathbb{N}}$ in any way you want to.)
 - Prove that $(t_n)_{n \in \mathbb{N}}$ does not tend to a limit.
 - On the other hand, prove that for every real number q there is a subsequence of $(t_n)_{n \in \mathbb{N}}$ that tends to q.
- (19) Evaluate the recurring decimal 0.142857142857... exactly as a rational.

Total Marks for Paper: 10.