The University of Edinburgh 2010

School of Mathematics
Geometry \& Convergence

Problem Sheet 5: Solutions

Assessment 5 due by 12.10 on Friday, 12 March 2010.

Tutorial 5 on Tuesday, 9 March 2010.

Pretutorial questions: 3 , and 12 .
Tutorial questions: $4,5,6$, and 11 .
Handin questions: 1, 2, 7, and 10.
$\left(1^{\dagger}\right)$ Prove by induction that, for fixed $a \neq 1$ and $n=1,2, \ldots$

$$
1+a+a^{2}+\ldots+a^{n-1}=\frac{a^{n}-1}{a-1}
$$

Solution.

Base Case: For $n=0$, we have $L H S_{n}=1$ and $R H S_{n}=$ $(a-1) /(a-1)=1 \quad[$ mark: 1]. Induction case: Assume that, for a fixed $n \geq 1$, the $L H S_{n}=R H S_{n} \quad[$ mark: 1]. Then

$$
\begin{array}{rlr}
L H S_{n+1} & =\left(1+a+\cdots+a^{n-1}\right)+a^{n} & \\
& =\frac{a^{n}-1}{a-1}+a^{n}, & \\
& =\frac{a^{n+1}-1+a^{n+1}-a^{n}}{a-1} & \\
& =\frac{a^{n+1}-1}{a-1} . & \\
& =R H S_{n+1} & \text { [mark: } 1]
\end{array}
$$

This proves, by the principle of mathematical induction, that the formula is true for all $n \in \mathbb{N}$. Total Marks for Question: 3.
$\left(2^{\dagger}\right)$ Define $a_{n}(n=0,1,2, \ldots)$ by $a_{0}=1$ and $a_{n+1}=a_{n}+2^{n}+1$. Show by induction that

$$
a_{n}=2^{n}+n \quad(n=0,1,2, \ldots)
$$

Solution.

Base Case: For the base case of $n=0$, we have $L H S_{n}=a_{0}=1$ and $R H S_{n}=2^{0}+0=1 \quad[$ mark: 1].
Induction Case: Assume that, for a fixed $n \geq 0$, the $L H S_{n}=$ $R H S_{n} \quad$ [mark: 1]. Then

$$
\begin{array}{rlr}
\text { LHS } S_{n+1} & =a_{n+1}=a_{n}+2^{n}+1 \\
& =\left(2^{n}+n\right)+2^{n}+1 \\
& =2^{n+1}+(n+1) & \\
& =R H S_{n+1} . & \text { by induction hypothesis } \\
\text { [mark: 1] }
\end{array}
$$

This proves, by the principle of mathematical induction, that the formula is true for all $n \in \mathbb{N}$. Total Marks for Question: 3.
$\left(3^{* *}\right)$ A certain algorithm takes time $T(n)$ to sort a set of 2^{n} elements, and time $T(n+1)=T(n) \times n^{2}$ to sort a set of 2^{n+1} elements. Show by induction that

$$
T(n)=((n-1)!)^{2} T(1) \quad(n=1,2, \ldots)
$$

Solution.

Base Case: for $n=1$, since $0!=1$, we have $L H S_{n}=R H S_{n}$. Induction Step: Assume that for a fixed $n \geq 1$, the above equation is true. Then

$$
\begin{array}{rlrl}
T(n+1) & =T(n) \times n^{2} & & \text { by definition of } T(n) \\
& =n^{2} \times((n-1)!)^{2} \times T(1) & & \text { by induction hypothesis } \\
& =(((n+1)-1)!)^{2} T(1), &
\end{array}
$$

which proves that $L H S_{n+1}=R H S_{n+1}$. The principle of mathematical induction implies that the identity holds for all $n \in \mathbb{N}$.
$\left(4^{*}\right)$ Prove by induction that $3^{n}-2 n^{2}-1$ is divisible by 8 , for $n=1,2, \ldots$

Solution.

Base Case: When $n=1$, we have $3^{n}-2 n^{2}-1=0 \equiv 0 \bmod 8$, hence is divisible by 8 .
Induction step: Assume that $3^{n}-2 n^{2}-1 \equiv 0 \bmod 8$. Then

$$
\begin{array}{ll}
3^{n+1}-2(n+1)^{2}-1 & \\
=3\left(3^{n}-2 n^{2}-1\right)+4 n^{2}+4 n & \\
\equiv 4 n(n+1) \bmod 8 & \text { by the induction hypothesis } \\
\equiv 0 \bmod 8, & \text { one of } n \text { or } n+1 \text { is even. }
\end{array}
$$

This proves, by the principle of mathematical induction, that $3^{n}-2 n^{2}-1 \equiv 0 \bmod 8$ for all $n \in \mathbb{N}$.
(5*) The Fibonacci numbers f_{n} are defined by $f_{1}=f_{2}=1$ and $f_{n+1}=$ $f_{n}+f_{n-1}$ for $n \geq 2$. Prove by strong induction that

$$
\phi^{n-2} \leq f_{n} \leq \phi^{n} \quad(n=1,2, \ldots)
$$

where $\phi=\frac{1}{2}(1+\sqrt{5})$, the so-called Golden Ratio.
[Use the fact that $1+\phi=\phi^{2}$.]

Solution.

Base Case: Let $n=1$. Then,

$$
\begin{array}{ll}
4 \leq 5 \leq 9 & \Longrightarrow 2 \leq \sqrt{5} \leq 3 \\
3 \leq \sqrt{5}+1 \leq 4 & \Longrightarrow \frac{3}{2} \leq \frac{\sqrt{5}+1}{2} \leq 2
\end{array}
$$

Thus, with $n=1$,

$$
\phi^{-1}=\frac{2}{\sqrt{5}+1} \leq \frac{1}{2}<1=f_{1} \leq \frac{3}{2} \leq \frac{\sqrt{5}+1}{2}=\phi^{1}
$$

Induction step: Assume the inequality is true for all integers between 1 and some fixed $n \geq 1$. Then,

$$
\begin{aligned}
f_{n+1} & =f_{n}+f_{n-1} & & \text { by definition of } f_{n+1} \\
& \geq \phi^{n-2}+\phi^{n-3} & & \text { by induction hypothesis } \\
& \geq \phi^{n-3}(1+\phi) & & \\
& =\phi^{(n+1)-2} & &
\end{aligned}
$$

which proves the LHS of the inequality for $n+1$. While

$$
\begin{aligned}
f_{n+1} & =f_{n}+f_{n-1} & & \text { by definition of } f_{n+1} \\
& \leq \phi^{n}+\phi^{n-1} & & \text { by induction hypothesis } \\
& \leq \phi^{n-1}(1+\phi) & & \\
& =\phi^{(n+1)} & &
\end{aligned}
$$

which proves the RHS of the inequality for $n+1$.
Therefore, by the principle of (strong) mathematical induction, the inequalities are true for all $n \in \mathbb{N}$.
$\left(6^{*}\right)$ Let $\lfloor x\rfloor$ be the floor of x, i.e. the largest integer $\leq x$. Prove by induction that

$$
n=\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n+1}{2}\right\rfloor \quad(n=1,2, \ldots)
$$

Solution.

Base Case: For $n=1$, we have $\lfloor n / 2\rfloor=0$ and $\lfloor(n+1) / 2\rfloor=1$ which shows that $L H S_{n}=R H S_{n}$ for $n=1$.
Induction Step: Let us observe that $\lfloor x+1\rfloor=\lfloor x\rfloor+1$ for all real numbers x, so $\lfloor(n+2) / 2\rfloor=\lfloor n / 2\rfloor+1$ for all $n \in \mathbb{N}$. Assume that the equation is true for some fixed $n \geq 1$. Then

$$
\begin{aligned}
n+1 & =\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n+1}{2}\right\rfloor+1 & & \text { by induction hypothesis } \\
& =\left\lfloor\frac{n+2}{2}\right\rfloor+\left\lfloor\frac{n+1}{2}\right\rfloor, & & \text { by the observation. }
\end{aligned}
$$

By the principle of mathematical induction, the proves the identity for all $n \in \mathbb{N}$.
$\left(7^{\dagger}\right)$ What is wrong with the following inductive argument:
" Theorem. Let $x>0$ be fixed. Then $x^{n-1}=1$ for $n=1,2, \ldots$.
Proof. If $n=1$ then $x^{1-1}=x^{0}=1$, so result true for $n=1$. Assuming the result true for $1,2, \ldots$, we have

$$
x^{(n+1)-1}=x^{n}=x^{n-1} \times x^{n-1} / x^{n-2}=1 \times 1 / 1=1
$$

so that the result holds for $n+1$ as well." (Knuth)

Solution.

This is a subtle flaw. Let $P(n)$ be the statement " $x^{n-1}=1$ ". The proof has verified $P(1)$ is true. The inductive step then proves that if $P(n)$ and $P(n-1)$ are true, then $P(n+1)$ is true. However, in mathematical induction, we are only allowed to assume $P(n)$ in order to prove $P(n+1)$.
In strong mathematical induction, we are allowed to assume $P(1), \cdots, P(n)$ in order to prove $P(n+1)$. In particular, we are only allowed to assume $P(1)$ to prove $P(2)$. However, above we assume $P(0)$ and $P(1)$ to prove $P(2) \quad$ [marks: 2]. Total Marks for Question: 2.
(8) Show that if, for some proposition $P(n)$,
(a) $P(1)$ is true
(b) $P(n)$ true $\Longrightarrow P(2 n)$ and $P(2 n+1)$ both true $(n=1,2, \ldots)$
then $P(n)$ is true for $n=1,2, \ldots$.
[Use induction on the length of the binary representation of n].
(9) (Esoteric variant of induction.) Show that if, for some statement $P_{2}(n)$,
(a) $P_{2}(1)$ is true
(b) $P_{2}(n)$ true $\Longrightarrow P_{2}(2 n)$ true $(n=1,2, \ldots)$
(c) $P_{2}(n+1)$ true $\Longrightarrow P_{2}(n)$ true (!) $(n=1,2, \ldots)$
then $P_{2}(n)$ is true for $n=1,2, \ldots$.

Convergence of sequences and series

$\left(10^{\dagger}\right)$ Define a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ by $t_{n}=\frac{2 n+1}{n^{3}}$. Prove that this sequence tends to 0 as $n \rightarrow \infty$.

Solution.

Rough Work. Let us obtain a simple upper bound on $\left|t_{n}-0\right|$:

$$
\begin{aligned}
\left|t_{n}-0\right| & \leq \frac{1}{n^{2}} \times \frac{2+1 / n}{1} & & \text { dividing top/bottom by } n / n^{3} \\
& \leq \frac{3}{n^{2}} & & \text { since } n \geq 1,1 / n \leq 1 \\
& \leq \frac{1}{n} & & \text { for } n \geq 3
\end{aligned}
$$

[mark: 1]
End of Rough Work
Proof. Let $\epsilon>0$ be given. Choose N to be the largest of 3 and $\epsilon^{-1}+1$. If $n \geq N$, then

$$
\begin{array}{rlr}
\left|t_{n}-0\right| & \leq \frac{1}{n} & \\
& \leq \frac{1}{N} & \text { by rough work, since } n \geq 3 \\
& <\epsilon . & \\
& \text { since } n \geq N \\
&
\end{array}
$$

By the definition of convergence, t_{n} converges to 0
[mark: $1]$.

Total Marks for Question: 2.
(11*) Define a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{n}=\frac{2 n^{2}-1}{n^{3}-2}$. Prove that this sequence tends to 0 as $n \rightarrow \infty$.

Solution.

Since $a_{n} \sim 2 / n$ for large n, it should converge to 0 .
Rough Work. Let us obtain a simple upper bound on $\left|a_{n}-0\right|$:

$$
\begin{array}{rlr}
\left|a_{n}-0\right| & =\left|\frac{2 n^{2}-1}{n^{3}}-2\right| & \\
& \leq\left|\frac{2 n^{2}}{\frac{1}{2} n^{3}}\right| & \\
& \text { since }\left|n^{3}-2\right|=\frac{1}{2} n^{3}+\left(\frac{1}{2} n^{3}-2\right) \\
& >\frac{1}{2} n^{3} \text { for } n \geq 2 \\
& \leq \frac{2 n^{2}}{\frac{1}{2} n^{3}} & \\
& \text { since } n \geq 1 \\
& \frac{4}{n} & \\
\text { for } n \geq 2 .
\end{array}
$$

So we want $4 / n<\epsilon$, i.e. $n>4 / \epsilon$.
End of Rough Work
Proof. Let $\epsilon>0$ be given. Choose N to be the largest of 2 and $4 \epsilon^{-1}+1$. If $n \geq N$, then

$$
\begin{aligned}
\left|a_{n}-0\right| & \leq \frac{4}{n} & & \text { by rough work, since } n \geq 2 \\
& \leq \frac{4}{N} & & \text { since } n \geq N \\
& <\epsilon & & \text { since } 4 / N<1 /\left(\epsilon^{-1}+1 / 4\right)<\epsilon
\end{aligned}
$$

By the definition of convergence, a_{n} converges to 0 .
$\left(12^{* *}\right)$ Prove that the sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ defined by $t_{n}=\frac{2 n+\sin n}{3 n}$ tends to a limit as $n \rightarrow \infty$.

Solution.

Since $t_{n}=\frac{\sin n}{3 n}+\frac{2}{3}$, and $|\sin n|$ is bounded, t_{n} should converge to $2 / 3$.

Rough Work.

$$
\begin{aligned}
\left|t_{n}-\frac{2}{3}\right| & =\frac{|\sin n|}{3 n} \\
& \leq \frac{1}{3 n} \quad \text { since }|\sin x| \leq 1, x \in \mathbb{R} \\
& \leq \frac{1}{n}
\end{aligned}
$$

End of Rough Work

Proof. Let $\epsilon>0$ be given. Choose N to equal $\epsilon^{-1}+1$ so that $1 / N<\epsilon$. Then, if $n \geq N$

$$
\begin{array}{rlrl}
\left|t_{n}-\frac{2}{3}\right| & \leq \frac{1}{n} & & \text { by rough work } \\
& \leq \frac{1}{N} & & \text { since } n \geq N \\
& <\epsilon . &
\end{array}
$$

This proves that t_{n} converges to $2 / 3$.
(13) Suppose that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ tends to the limit A, while the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ tends to B. Prove that the sequence $\left(a_{n}+b_{n}\right)_{n \in \mathbb{N}}$ tends to $A+B$.
(14) Suppose that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ tends to the limit A, while the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ tends to B. Prove that the sequence $\left(a_{n} \cdot b_{n}\right)_{n \in \mathbb{N}}$ tends to $A B$.
(15) Suppose that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ tends to a limit A, and the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ tends to a limit B. Does the sequence $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}, \ldots$ tend to a limit?
(16) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges.
(17) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n+100000}$ diverges.
(18) (Harder) You know (e.g. from the Group Theory course) that the rationals are countable. This means that there is a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ that contains each rational number exactly once. (In fact there are many such sequences, obtained by re-ordering $\left(t_{n}\right)_{n \in \mathbb{N}}$ in any way you want to.)

- Prove that $\left(t_{n}\right)_{n \in \mathbb{N}}$ does not tend to a limit.
- On the other hand, prove that for every real number q there is a subsequence of $\left(t_{n}\right)_{n \in \mathbb{N}}$ that tends to q.
(19) Evaluate the recurring decimal $0.142857142857 \ldots$ exactly as a rational.

Total Marks for Paper: 10.

