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The University of Edinburgh School of Mathematics
2010 (U01457)

Geometry & Convergence

Problem Sheet 5: Solutions

Assessment 5 due by 12.10 on Friday, 12 March 2010.
Tutorial 5 on Tuesday, 9 March 2010.

Pretutorial questions: 3, and 12.

Tutorial questions: 4, 5, 6, and 11.

Handin questions: 1, 2, 7, and 10.

(1†) Prove by induction that, for fixed a 6= 1 and n = 1, 2, . . .

1 + a+ a2 + . . .+ an−1 =
an − 1

a− 1
.

Solution.

Base Case: For n = 0, we have LHSn = 1 and RHSn =
(a− 1)/(a− 1) = 1 [mark: 1]. Induction case: Assume that,
for a fixed n ≥ 1, the LHSn = RHSn [mark: 1]. Then

LHSn+1 = (1 + a+ · · ·+ an−1) + an

=
an − 1

a− 1
+ an, by induction hypothesis

=
an+1 − 1 + an+1 − an

a− 1

=
an+1 − 1

a− 1
.

= RHSn+1 [mark: 1]

This proves, by the principle of mathematical induction, that
the formula is true for all n ∈ N. Total Marks for Question:

3.

(2†) Define an (n = 0, 1, 2, . . .) by a0 = 1 and an+1 = an + 2n + 1. Show
by induction that

an = 2n + n (n = 0, 1, 2, . . .).

Solution.

Base Case: For the base case of n = 0, we have LHSn = a0 = 1
and RHSn = 20 + 0 = 1 [mark: 1].

Induction Case: Assume that, for a fixed n ≥ 0, the LHSn =
RHSn [mark: 1]. Then

LHSn+1 = an+1 = an + 2n + 1

= (2n + n) + 2n + 1 by induction hypothesis

= 2n+1 + (n+ 1)

= RHSn+1. [mark: 1]

This proves, by the principle of mathematical induction, that
the formula is true for all n ∈ N. Total Marks for Question:

3.

(3∗∗) A certain algorithm takes time T (n) to sort a set of 2n elements,
and time T (n+1) = T (n)×n2 to sort a set of 2n+1 elements. Show
by induction that

T (n) = ((n− 1)!)2T (1) (n = 1, 2, . . .).

Solution.

Base Case: for n = 1, since 0! = 1, we have LHSn = RHSn.

Induction Step: Assume that for a fixed n ≥ 1, the above
equation is true. Then

T (n+ 1) = T (n)× n2 by definition of T (n)

= n2 × ((n− 1)!)2 × T (1) by induction hypothesis

= (((n+ 1)− 1)!)2T (1),

which proves that LHSn+1 = RHSn+1. The principle of
mathematical induction implies that the identity holds for all
n ∈ N.
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(4∗) Prove by induction that 3n−2n2−1 is divisible by 8, for n = 1, 2, . . ..

Solution.

Base Case: When n = 1, we have 3n − 2n2 − 1 = 0 ≡ 0 mod 8,
hence is divisible by 8.

Induction step: Assume that 3n − 2n2 − 1 ≡ 0 mod 8. Then

3n+1 − 2(n+ 1)2 − 1

= 3(3n − 2n2 − 1) + 4n2 + 4n

≡ 4n(n+ 1) mod 8 by the induction hypothesis

≡ 0 mod 8, one of n or n+ 1 is even.

This proves, by the principle of mathematical induction, that
3n − 2n2 − 1 ≡ 0 mod 8 for all n ∈ N.

(5∗) The Fibonacci numbers fn are defined by f1 = f2 = 1 and fn+1 =
fn + fn−1 for n ≥ 2. Prove by strong induction that

φn−2 ≤ fn ≤ φn (n = 1, 2, . . .),

where φ =
1

2
(1 +

√
5), the so-called Golden Ratio.

[Use the fact that 1 + φ = φ2.]

Solution.

Base Case: Let n = 1. Then,

4 ≤ 5 ≤ 9 =⇒ 2 ≤
√
5 ≤ 3

3 ≤
√
5 + 1 ≤ 4 =⇒ 3

2
≤

√
5 + 1

2
≤ 2

Thus, with n = 1,

φ−1 =
2√
5 + 1

≤ 1

2
< 1 = f1 ≤

3

2
≤

√
5 + 1

2
= φ1

Induction step: Assume the inequality is true for all integers
between 1 and some fixed n ≥ 1. Then,

fn+1 = fn + fn−1 by definition of fn+1

≥ φn−2 + φn−3 by induction hypothesis

≥ φn−3(1 + φ)

= φ(n+1)−2

which proves the LHS of the inequality for n+ 1. While

fn+1 = fn + fn−1 by definition of fn+1

≤ φn + φn−1 by induction hypothesis

≤ φn−1(1 + φ)

= φ(n+1)

which proves the RHS of the inequality for n+ 1.

Therefore, by the principle of (strong) mathematical induction,
the inequalities are true for all n ∈ N.

(6∗) Let ⌊x⌋ be the floor of x, i.e. the largest integer ≤ x. Prove by
induction that

n =
⌊n

2

⌋

+

⌊

n+ 1

2

⌋

(n = 1, 2, . . .).

Solution.

Base Case: For n = 1, we have ⌊n/2⌋ = 0 and ⌊(n+ 1)/2⌋ = 1
which shows that LHSn = RHSn for n = 1.

Induction Step: Let us observe that ⌊x+ 1⌋ = ⌊x⌋ + 1 for all
real numbers x, so ⌊(n+ 2)/2⌋ = ⌊n/2⌋ + 1 for all n ∈ N.
Assume that the equation is true for some fixed n ≥ 1. Then

n+ 1 =
⌊n

2

⌋

+

⌊

n+ 1

2

⌋

+ 1 by induction hypothesis

=

⌊

n+ 2

2

⌋

+

⌊

n+ 1

2

⌋

, by the observation.
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By the principle of mathematical induction, the proves the
identity for all n ∈ N.

(7†) What is wrong with the following inductive argument:

“ Theorem. Let x > 0 be fixed. Then xn−1 = 1 for n = 1, 2, . . ..

Proof. If n = 1 then x1−1 = x0 = 1, so result true for n = 1.
Assuming the result true for 1, 2, . . ., we have

x(n+1)−1 = xn = xn−1 × xn−1/xn−2 = 1× 1/1 = 1,

so that the result holds for n+ 1 as well.” (Knuth)

Solution.

This is a subtle flaw. Let P (n) be the statement “xn−1 = 1”.
The proof has verified P (1) is true. The inductive step then
proves that if P (n) and P (n − 1) are true, then P (n + 1) is
true. However, in mathematical induction, we are only allowed
to assume P (n) in order to prove P (n+ 1).

In strong mathematical induction, we are allowed to assume
P (1), · · · , P (n) in order to prove P (n + 1). In particular, we
are only allowed to assume P (1) to prove P (2). However, above
we assume P (0) and P (1) to prove P (2) [marks: 2]. Total

Marks for Question: 2.

(8) Show that if, for some proposition P (n),

(a) P (1) is true

(b) P (n) true =⇒ P (2n) and P (2n+ 1) both true (n = 1, 2, . . .)

then P (n) is true for n = 1, 2, . . ..

[Use induction on the length of the binary representation of n].

(9) (Esoteric variant of induction.) Show that if, for some statement
P2(n),

(a) P2(1) is true

(b) P2(n) true =⇒ P2(2n) true (n = 1, 2, . . .)

(c) P2(n+ 1) true =⇒ P2(n) true (!) (n = 1, 2, . . .)

then P2(n) is true for n = 1, 2, . . ..

Convergence of sequences and series

(10†) Define a sequence (tn)n∈N by tn =
2n+ 1

n3
. Prove that this sequence

tends to 0 as n → ∞.

Solution.

Rough Work. Let us obtain a simple upper bound on |tn − 0|:

|tn − 0| ≤ 1

n2
× 2 + 1/n

1
dividing top/bottom by n/n3

≤ 3

n2
since n ≥ 1, 1/n ≤ 1

≤ 1

n
for n ≥ 3.

[mark: 1]

End of Rough Work

Proof. Let ǫ > 0 be given. Choose N to be the largest of 3
and ǫ−1 + 1. If n ≥ N , then

|tn − 0| ≤ 1

n
by rough work, since n ≥ 3

≤ 1

N
since n ≥ N

< ǫ.

By the definition of convergence, tn converges to 0 [mark:

1].

Total Marks for Question: 2.
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(11∗) Define a sequence (an)n∈N by an =
2n2 − 1

n3 − 2
. Prove that this se-

quence tends to 0 as n → ∞.

Solution.

Since an ∼ 2/n for large n, it should converge to 0.

Rough Work. Let us obtain a simple upper bound on |an − 0|:

|an − 0| =
∣

∣

∣

∣

2n2 − 1

n3
− 2

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2n2

1
2n

3

∣

∣

∣

∣

∣

since
∣

∣n3 − 2
∣

∣ =
1

2
n3 + (

1

2
n3 − 2)

>
1

2
n3 for n ≥ 2

≤ 2n2

1
2n

3
since n ≥ 1

≤ 4

n
for n ≥ 2.

So we want 4/n < ǫ, i.e. n > 4/ǫ.
End of Rough Work

Proof. Let ǫ > 0 be given. Choose N to be the largest of 2
and 4ǫ−1 + 1. If n ≥ N , then

|an − 0| ≤ 4

n
by rough work, since n ≥ 2

≤ 4

N
since n ≥ N

< ǫ since 4/N < 1/(ǫ−1 + 1/4) < ǫ.

By the definition of convergence, an converges to 0.

(12∗∗) Prove that the sequence (tn)n∈N defined by tn =
2n+ sinn

3n
tends

to a limit as n → ∞.

Solution.

Since tn =
sinn

3n
+
2

3
, and | sinn| is bounded, tn should converge

to 2/3.

Rough Work.

∣

∣

∣

∣

tn − 2

3

∣

∣

∣

∣

=
|sinn|
3n

≤ 1

3n
since |sinx| ≤ 1, x ∈ R

≤ 1

n
.

End of Rough Work

Proof. Let ǫ > 0 be given. Choose N to equal ǫ−1+1 so that
1/N < ǫ. Then, if n ≥ N ,

∣

∣

∣

∣

tn − 2

3

∣

∣

∣

∣

≤ 1

n
by rough work

≤ 1

N
since n ≥ N

< ǫ.

This proves that tn converges to 2/3.

(13) Suppose that the sequence (an)n∈N tends to the limit A, while the
sequence (bn)n∈N tends to B. Prove that the sequence (an + bn)n∈N
tends to A+B.

(14) Suppose that the sequence (an)n∈N tends to the limit A, while the
sequence (bn)n∈N tends to B. Prove that the sequence (an · bn)n∈N
tends to AB.

(15) Suppose that the sequence (an)n∈N tends to a limit A, and
the sequence (bn)n∈N tends to a limit B. Does the sequence
a1, b1, a2, b2, . . . , an, bn, . . . tend to a limit?
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(16) Prove that the series
∑∞

n=1

1

n2 + 1
converges.

(17) Prove that the series
∑∞

n=1

1

n+ 100000
diverges.

(18) (Harder) You know (e.g. from the Group Theory course) that the
rationals are countable. This means that there is a sequence (tn)n∈N
that contains each rational number exactly once. (In fact there are
many such sequences, obtained by re-ordering (tn)n∈N in any way
you want to.)

• Prove that (tn)n∈N does not tend to a limit.

• On the other hand, prove that for every real number q there is
a subsequence of (tn)n∈N that tends to q.

(19) Evaluate the recurring decimal 0.142857142857 . . . exactly as a ra-
tional.

Total Marks for Paper: 10.
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