The University of Edinburgh 2010

School of Mathematics
Geometry \& Convergence

Problem Sheet 4: Solutions

Assessment 4 due by 12.10 on Friday, 26 February 2010.

Tutorial 4 on Tuesday, 23 February 2010.

Tutorial questions: 1,3 , and 5 .
Handin questions: 2, and 4.

Conics

(1*) Put the following conics into standard form.
(i) $\mathcal{X}_{0}: 7 y^{2}+2 x y+7 x^{2}=1$.
(ii) $\mathcal{X}_{1}: 7 y^{2}+2 x y-y+7 x^{2}+11 x=1$.
(iii) What is the length of the semi-minor (resp. semi-majour) axis of \mathcal{X}_{0} ?
(iv) What is the centre of \mathcal{X}_{1} ?

Solution.

Since the conic \mathcal{X}_{1} has the same quadratic part as \mathcal{X}_{0}, we will do just \mathcal{X}_{1}. Let

$$
S=\left[\begin{array}{cc}
7 & 1 \\
1 & 7
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The characteristic polynomial of S is

$$
\operatorname{det}(S-\lambda I)=(7-\lambda)^{2}-1 \quad \Longrightarrow \quad \text { roots } \lambda=6,8
$$

The associated unit eigenvectors are

$$
\begin{array}{ll}
\lambda_{1}=6: \quad S-6 I=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] & \Longrightarrow \mathbf{x}_{1}=\frac{1}{\sqrt{2}} \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\lambda_{2}=8: \quad S-8 I=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] & \Longrightarrow \mathbf{x}_{2}=\frac{1}{\sqrt{2}} \times\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

Thus, we will introduce the coordinate change

$$
\mathbf{x}=\frac{1}{\sqrt{2}} \times\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \mathbf{u}, \quad \mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

and simplify $\mathcal{X}_{1}\left(\mathcal{X}_{0}\right)$ to

$$
\begin{aligned}
& \mathcal{X}_{1}: 8 v^{2}+6 u^{2}+3 \times 2^{\frac{3}{2}} u+5 \sqrt{2} v=1 \\
& \mathcal{X}_{0}: 8 v^{2}+6 u^{2}=1
\end{aligned}
$$

We substitute

$$
u=r-\frac{3 \times 2^{\frac{3}{2}}}{2 \times 6}=r-\frac{1}{\sqrt{2}} \quad v=s-\frac{5 \sqrt{2}}{2 \times 8}=s-\frac{5}{2^{\frac{7}{2}}}
$$

to get

$$
\mathcal{X}_{1}: 8 s^{2}+6 r^{2}=89 / 16
$$

Remark. We did not need to compute \mathbf{x}_{2} explicitly, once we know \mathbf{x}_{1}, since $\mathbf{x}_{2} \perp \mathbf{x}_{1}$.
(v) In \mathcal{X}_{0}, we have $|u| \leq 1 / \sqrt{6},|v| \leq \frac{1}{2 \sqrt{2}}$, so the semi-minor (semimajour) axis length is $\frac{1}{2 \sqrt{2}}\left(\right.$ resp. $\left.\frac{1}{\sqrt{6}}\right)$.
(vi) $(u, v)=\left(-\frac{1}{\sqrt{2}},-\frac{5}{2^{\frac{7}{2}}}\right)$.
$\left(2^{\dagger}\right)$ Put the following conics into standard form.
(i) $\mathcal{X}_{0}: 86 y^{2}-96 x y+114 x^{2}=1$.
(ii) $\mathcal{X}_{1}: 86 y^{2}-96 x y+45 y+114 x^{2}+65 x=1$.

Solution.

Since the conic \mathcal{X}_{1} has the same quadratic part as \mathcal{X}_{0}, we will do just \mathcal{X}_{1}. Let

$$
S=\left[\begin{array}{cc}
114 & -48 \\
-48 & 86
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

[mark: 1]

The characteristic polynomial of S is

$$
\begin{aligned}
\operatorname{det}(S-\lambda I) & =(86-\lambda)(114-\lambda)-2304=\lambda^{2}-200 \lambda+7500 \\
& \Longrightarrow \quad \text { roots } \lambda=150,50 . \quad[\text { mark: } 1]
\end{aligned}
$$

The associated unit eigenvectors are

$$
\begin{aligned}
& \lambda_{1}=50: \quad S-50 I=\left[\begin{array}{cc}
64 & -48 \\
-48 & 36
\end{array}\right] \\
& \mapsto\left[\begin{array}{ll}
4 & -3 \\
4 & -3
\end{array}\right] \begin{array}{l}
\text { row } 1 / 16 \\
\text { row } 2 /(-12)
\end{array} \\
& \Longrightarrow \mathbf{x}_{1}=\frac{1}{5} \times\left[\begin{array}{l}
3 \\
4
\end{array}\right] \text {, } \\
& \lambda_{2}=150: \quad S-150 I=\left[\begin{array}{cc}
-36 & -48 \\
-48 & -64
\end{array}\right] \\
& \mapsto\left[\begin{array}{ll}
3 & 4 \\
3 & 4
\end{array}\right] \begin{array}{l}
\text { row } 1 /(-12) \\
\text { row } 2 /(-16)
\end{array} \\
& \Longrightarrow \mathbf{x}_{2}=\frac{1}{5} \times\left[\begin{array}{c}
4 \\
-3
\end{array}\right] \cdot[\text { mark: } 1]
\end{aligned}
$$

Thus, we will introduce the coordinate change

$$
\mathbf{x}=\frac{1}{5} \times\left[\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right] \mathbf{u}, \quad \mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

and simplify $\mathcal{X}_{1}\left(\mathcal{X}_{0}\right)$ to

$$
\begin{aligned}
& \mathcal{X}_{1}: 50 u^{2}+150 v^{2}+75 u+25 v=1 \\
& \mathcal{X}_{0}: 50 u^{2}+150 v^{2}=1 .[\text { mark: } 1]
\end{aligned}
$$

We substitute

$$
u=r-\frac{75}{2 \times 50}=r-\frac{3}{4} \quad v=s-\frac{25}{2 \times 150}=s-\frac{1}{12}
$$

to get
$\mathcal{X}_{1}: 150 s^{2}+50 r^{2}=\frac{181}{6}$.[mark: 1]
Total Marks for Question: 5.
$\left(3^{*}\right)$ Put the following centred conics into standard form simultaneously.

$$
\begin{aligned}
& \mathcal{X}_{0}: 95 y^{2}+216 x y+130 x^{2}=1 \\
& \mathcal{X}_{1}: 222 y^{2}+480 x y+278 x^{2}=1
\end{aligned}
$$

Do these conics intersect?

Solution

Let S and R denote the symmetric matrices associated to \mathcal{X}_{0} and \mathcal{X}_{1}, respectively,

$$
S=\left[\begin{array}{cc}
130 & 108 \\
108 & 95
\end{array}\right] \quad R=\left[\begin{array}{cc}
278 & 240 \\
240 & 222
\end{array}\right]
$$

We wish to simultaneously diagonalise R and S as quadratic forms. To do this we compute the generalised characteristic polynomial, its roots, and the generalised eigenvectors.

$$
\begin{aligned}
\operatorname{det}(R-\lambda S) & =(278-130 \lambda)(222-95 \lambda)-(240-108 \lambda)^{2} \\
& =686\left(\lambda^{2}-5 \lambda+6\right) \\
& \Longrightarrow \text { roots } \lambda=2,3
\end{aligned}
$$

Associated eigenvectors are

$$
\left.\left.\begin{array}{ll}
\lambda_{1}=3: & \\
& \mapsto-3 S=\left[\begin{array}{cc}
-112 & -84 \\
-84 & -63
\end{array}\right] \\
& \Longrightarrow \mathbf{x}_{1}=\left[\begin{array}{c}
3 \\
4
\end{array}\right]
\end{array}\right] \begin{array}{c}
- \text { row } 1 / 28 \\
- \text { row } 2 / 21
\end{array}\right], ~\left(\begin{array}{cc}
18 & 24 \\
24 & 32
\end{array}\right] .
$$

Thus, we will introduce the coordinate change

$$
\mathbf{x}=\left[\begin{array}{cc}
3 & 4 \\
-4 & -3
\end{array}\right] \mathbf{u}, \quad \mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right.
$$

and simplify $\mathcal{X}_{0}\left(\mathcal{X}_{1}\right)$ to

$$
\begin{aligned}
& \mathcal{X}_{0}: 343 v^{2}+98 u^{2}=1 \\
& \mathcal{X}_{1}: 686 v^{2}+294 u^{2}=1
\end{aligned}
$$

The final step is to introduce the substitution

$$
\begin{array}{rlr}
u & =r / \sqrt{98} & v=s / \sqrt{343} \text { which implies } \\
\mathcal{X}_{0} & : s^{2}+r^{2}=1 & \\
\mathcal{X}_{1} & : 2 s^{2}+3 r^{2}=1 . &
\end{array}
$$

Note that \mathcal{X}_{0} and \mathcal{X}_{1} do not intersect in \mathbb{R}^{2}, since when solving for r^{2}, we get $r^{2}=-1$
$\left(4^{\dagger}\right)$ Put the following centred conics into standard form simultaneously.

$$
\begin{aligned}
& \mathcal{X}_{0}: 30 y^{2}+32 x y+9 x^{2}=1 \\
& \mathcal{X}_{1}: 12 y^{2}+20 x y+9 x^{2}=1
\end{aligned}
$$

Do these conics intersect?

Solution.

Let S and R denote the symmetric matrices associated to \mathcal{X}_{0} and \mathcal{X}_{1}, respectively,

$$
S=\left[\begin{array}{cc}
9 & 16 \\
16 & 30
\end{array}\right] \quad R=\left[\begin{array}{cc}
9 & 10 \\
10 & 12
\end{array}\right] .[\text { mark: } 1]
$$

We wish to simultaneously diagonalise R and S as quadratic forms. To do this we compute the generalised characteristic polynomial, its roots, and the generalised eigenvectors.

$$
\begin{aligned}
\operatorname{det}(R-\lambda S) & =(12-30 \lambda)(9-9 \lambda)-(10-16 \lambda)^{2} \\
14 \lambda^{2}-58 \lambda+8 & \Longrightarrow \text { roots } \lambda=\frac{1}{7}, 4 .[\text { mark: } 1]
\end{aligned}
$$

Associated eigenvectors are

$$
\begin{aligned}
& \lambda_{1}=4: \\
& R-4 S=\left[\begin{array}{cc}
-27 & -54 \\
-54 & -108
\end{array}\right] \\
& \mapsto\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] \begin{array}{l}
\text {-row } 1 / 27 \\
\text {-row } 2 / 54
\end{array} \\
& \Longrightarrow \mathrm{x}_{1}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \text {,[mark: 1] } \\
& \lambda_{2}=\frac{1}{7}: \quad R-\frac{1}{7} S=\left[\begin{array}{cc}
\frac{54}{7} & \frac{54}{7} \\
\frac{54}{7} & \frac{54}{7}
\end{array}\right] \\
& \mapsto\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& \Longrightarrow \mathrm{x}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text {. }
\end{aligned}
$$

Thus, we will introduce the coordinate change

$$
\mathbf{x}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \mathbf{u}, \quad \mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right][\text { mark: } \mathbf{1}]
$$

and simplify $\mathcal{X}_{0}\left(\mathcal{X}_{1}\right)$ to

$$
\begin{aligned}
& \mathcal{X}_{0}: 7 v^{2}+2 u^{2}=1, \\
& \mathcal{X}_{1}: v^{2}+8 u^{2}=1 .[\text { mark: } 1]
\end{aligned}
$$

The final step is to introduce the substitution

$$
\begin{aligned}
& u=r / \sqrt{2} \\
& \mathcal{X}_{0}: s^{2}+r^{2}=1 \\
& \mathcal{X}_{1}: \frac{s^{2}}{7}+4 r^{2}=1 .
\end{aligned}
$$

We see that the conics intersect at $(r, s)=(\pm \sqrt{2} / 3, \pm \sqrt{7} / 3)$.
Total Marks for Question: 5.
Total Marks for Paper: 10.

Induction

(5*) Prove by induction that $n^{2}-n+2$ is always even for $n=1,2, \ldots$.

Solution.

For $n=1$, we have $n^{2}-n+2=2$, which is even. So, let's assume that $n^{2}-n+2$ is even for some $n \geq 1$. Then $(n+$ $1)^{2}-(n+1)+2=\left(n^{2}-n+2\right)+2 n$, which is the sum of even numbers, hence even. Thus, the principal of induction says that $n^{2}-n+2$ is even for all positive integers n.

Remark. It may appear that induction is not needed since $n^{2}-n=n(n-1)$ and either n or $n-1$ is always divisible by n. However, one would want to insist that this "obvious" fact be proven by induction.
(6) Prove by induction that, for $n=1,2, \ldots$

$$
1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

(7) Prove by induction that $3^{n}>5 n^{2}$ for $n \geq 4$.
(8) Prove that $\cos (n \pi)=(-1)^{n}(n=0, \pm 1, \pm 2, \ldots)$, by induction.
(9) In a computer memory, an arbitrary length vector v_{n} stores sequentially all the previous vectors $v_{1}, v_{2}, \ldots, v_{n-1}$, so the length ℓ_{n} of v_{n} satisfies

$$
\ell_{n}=\ell_{1}+\ldots+\ell_{n-1} \quad(n=2,3, \ldots
$$

Given that $\ell_{1}=1$, prove by induction that $\ell_{n}=2^{n-2}$ for $n=$ $2,3, \ldots$.

What about $n=1$?

