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Preface

Degree Examination. The degree examination for this course will be of the
same format as the practice exams that will be distributed on the course web page
in due course. The questions should be similar to the questions on the sample
exams.

Words of Advice. There are a few pieces of advice for this course.

(1) Learn the Definitions—you must understand the meaning of the terms
used in the course. Vagueness will be penalised.

(2) Learn the Theorems—again, you must understand the meaning of the
theorems in this course, and how to apply them.

(3) Learn the Proofs—you must understand why certain things are true, not
simply those facts. This should not be a burden, because a proof always
explains more than just a fact.

How to Read These Notes. Mathematics is learned by doing exercises.
Frequently, exercises reveal aspects of the definitions and theorems that you have
learned which are not obvious.

It is recommended that you read these notes in parallel with the lectures. In
addition, these notes should be useful for your reference. To aid this second purpose,
the notes are equipped with an extensive index so that the reader can quickly locate
relevant information.

Books. There is no compulsory book for this course. Lecture notes will be
provided from the course web page. If you feel the need for a textbook there are
many books on linear algebra and calculus that may be useful. Anton’s Elementary

Linear Algebra and Adams’ Calculus, a complete course have been recommended
in the past.

v

http://student.maths.ed.ac.uk/displaycourse.html?id_module=3{}
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CHAPTER 1

Vector geometry

1. Vector geometry in the plane

Definition. A vector is an oriented line segment; alternatively, it is a direction

and a magnitude. We write
−−→
AB for the vector that joins the point A to the point

B; we call A the tail and B the head of the vector
−−→
AB. The length of the vector

−−→
AB is denoted by

∣

∣

∣

−−→
AB

∣

∣

∣.

A

B

�

Two vectors are equal if they have the same direction and magnitude. The
zero vector is the vector whose length is zero; the direction of the zero vector is

undefined;
−→
AA represents the zero vector.

Notation. In addition to the notation
−−→
AB, we will also denote vectors using

bold-face script a,b, . . . or underlined a, b, . . .. The zero vector will be denoted by
0.

1.1. Vector operations. A number is also called a scalar. We add two vectors
by the parallelogram law, which means that we place the tail of the second vector

at the head of the first. This means that the sum of
−−→
AB and

−−→
BC is

−→
AC.

If k is a scalar and a is a vector, then ka is the vector whose magnitude is |k|
times the magnitude of a and the direction of a if k > 0 and opposite if k < 0.

A B

C

-

��

�
a

	−a

�
2× a

Exercise. Use the definition of vector addition and scalar multiplication to show:

(1) If a is a vector, then a+ 0 = a.
(2) If k ∈ R, then k0 = 0.

1.2. Coordinates. A unit vector is a vector v with unit length: |v| = 1. Let
O be a chosen point and let i and j be unit vectors such that j is 90o counterclockwise
from i.

If P is a point in the plane, then the vector
−−→
OP = p is called the position vector

of P . We can write

p = xi+ yj,

and we call (x, y) the coordinates of the point P .

1
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2 1. VECTOR GEOMETRY

O
-

6

i

j

P
�6

yj

-
xi

−−→
OP = xi+ yj

The coordinates of i are (1, 0), while that of

j are (0, 1).

Notation. When we wish to distinguish between a point P and its position vector
p, while using coordinates, we will write

P = (x, y) p = 〈x, y〉, so

i = 〈1, 0〉 j = 〈0, 1〉.

For example, if

a = 〈2, 3〉 b = 〈−1, 4〉, then

a+ b = (2i+ 3j) + (−1i+ 4j) = (2− 1)i+ (3 + 4)j = 〈1, 7〉,

and

5a = 5(2i+ 3j) = 10i+ 15j = 〈10, 15〉.
That is, we add vectors componentwise and multiply the scalar with each compo-
nent.

1.3. Convention. We will assume that the origin O and unit vectors i and j

are fixed for the rest of the discussion—unless stated to the contrary.

2. Lines

2.1. Parametric form of a line. Let A be a point in the plane with position
vector a. Let u be a non-zero vector. The line L with direction vector u that passes
through the point A is the set of all points with position vectors:

(1) L =
{

P :
−−→
OP = a+ tu for some t ∈ R

}

.

Notation. It is convenient to blur the distinction between points and their position
vectors. We will do this with lines, writing

(2) L = {a+ tu : t ∈ R} .

2.2. Intersection of two lines. This can be calculated if they are both in
parametric form by solving two simultaneous equations for the two parameters
(which must be given different names).

If one is in parameter form and one in equation form, substitute the parametrised
line into the equation and solve for the parameter.

If both are in equation form, just solve two simultaneous equations. In all cases
if there is no solution, the two lines must be parallel.
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3. The section formula

3.1. Line through two points. The line through the points A,B with po-
sition vectors a,b respectively is given by

{ta+ (1− t)b}
(We will start to leave out the “t ∈ R”.)

3.2. The section formula. Let P be the point which divides the line segment
AB (as above) in the ratio n : m (meaning that P is a distance n from A and a
distance m from B in suitable units). Then P has position vector

ma+ nb

m+ n
.

(Remember the rule that for points on the line outside the segment AB, take one of
m,n negative—the rule being that distances are positive when they are measured
towards the other point and negative when in the other direction.)

4. Two theorems

4.1. Medians of a triangle. A median of a triangle is a line joining a vertex
to the midpoint of the opposite side.

Theorem. The medians of a triangle meet at a point (the “centroid” or “centre
of gravity” of the triangle). This point divides each median in the ratio 1 : 2.

Theorem. The diagonals of a parallelogram bisect each other.

5. Scalar product

Notation. Henceforth we adopt the convention that the components of a vector
a are given by a1, a2, etc. In other words,

a = a1i+ a2j.

Definition. The scalar product a · b of two vectors is the number

a · b = a1b1 + a2b2

The scalar product is also called the dot product and the inner product.

Properties. The scalar product has the following properties:

(1) a · b = b · a
(2) (a+ b) · c = (a · c) + (b · c)
(3) a · (b+ c) = (a · b) + (a · c)
(4) (ka) · b = k(a · b)
(5) a · (kb) = k(a · b)
(6) a · a = |a|2
(7) i · i = j · j = 1 and i · j = j · i = 0.

The last point (together with implicit use of the earlier ones) means that one
can compute, for example,

(2i− j) · (i+ 3j) = 2(i · i)− 3(j · j)− (j · i) + 6(i · j) = 2− 3 = −1.

Theorem. Let θ be the angle between the vectors a and b. Then

a · b = |a||b| cos θ.
(Note that this enables one to compute the angle between two vectors easily.)

Corollary. The dot product of two vectors vanishes only if one of the vectors is
zero or they are perpendicular.
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4 1. VECTOR GEOMETRY

5.1. Lines revisited. A vector perpendicular to the direction vector of a line
is called a normal to the line. Let A be a point with position vector a and let n be
a non-zero vector. Then the line through A with normal n has equation

(x− a) · n = 0.

(Putting x = xi + yj gives the equation in the familiar form kx + ly = m.) Con-
versely, given a line

kx+ ly = m,

the vector n = ki+ lj (or any non-zero multiple thereof) is a normal to the line.

Definition. If v is a vector, we define Jv to be the result of rotating v anti-
clockwise by a right-angle. Thus

J

(

v1
v2

)

=

(

0 −1
1 0

)(

v1
v2

)

=

(

−v2
v1

)

5.2. Directions and normals. If u is a direction vector for a line, then
n = Ju is a normal. Similarly, if n is a normal then u = Jn is a direction vector.

6. Areas

Definition. Let a,b be two vectors. Then the number [a,b] is defined by

[a,b] =

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣

=

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

= a1b2 − a2b1.

This is the determinant.

Properties. The following all follow immediately from standard properties of
determinants (which you should know from “Solving equations”).

(1) [a,b] = −[b,a].
(2) [a+ b, c] = [a, c] + [b, c] and similarly for the second argument.
(3) [ka,b] = k[a,b] and similarly for the second argument.
(4) [a,b+ ka] = [a,b].
(5) [i, i] = [j, j] = 0, [i, j] = 1, [j, i] = −1.

6.1. Geometric properties.

(1) [a,b] = (Ja) · b.
(2) [a,b] = |a||b| sin θ, where θ is the angle through which a must be rotated

anti-clockwise to obtain the direction of b.
(3) If [a,b] 6= 0 then it is positive if θ as defined above is less than π and

negative if it is greater.
(4) |[a,b]| is equal to the area of the parallelogram spanned by a,b.
(5) We say that the pair of vectors a,b (not multiples of each other) is posi-

tively oriented (or just oriented) if [a,b] > 0. Equivalently, a,b is oriented
if the direction of b is less than π radians from that of a measured anti-

clockwise.
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CHAPTER 2

Vectors in R
3

1. What carries over from the plane

Definitions. The definitions of a vector and its modulus, and of addition and
scalar multiplication remain the same.

1.1. Coordinates. In 3-dimensional space we choose an origin O and we
choose three mutually perpendicular unit vectors i, j,k. We do this in a way that
satisfies the right-hand rule: rotating from i to j is a right-handed screw motion if
you are looking in the direction of k.

We then have that the position vector p of the point P with coordinates (x, y, z)
is

p = xi+ yj+ zk

and

|p| =
√

x2 + y2 + z2.

By convention, a = a1i+ a2j+ a3k unless stated otherwise.

1.2. Lines. The parametric form for the line with direction vector u through
the point with position vector a is

{a+ tu : t ∈ R}.
For example, the line through the point (2, 1, 3) with direction vector −3i+ j− 8k
is

{(2− 3t, 1 + t, 3− 8t) : t ∈ R}.
The formulae for the line through two points and also the Section Formula remain
true.

1.3. Scalar product. We define the scalar product or dot product a · b to be
the number

a · b = a1b1 + a2b2 + a3b3.

The algebraic properties are identical to the case of the plane. (We should add
i · k = j · k = 0, k · k = 1.) We still have

a · b = |a||b| cos θ
and the same proof works. (First, draw both vectors with a common start point,
and restrict everything to the plane in which they both lie. The angle θ is the angle
between the vectors in this plane.)

2. Planes

2.1. Parametric form for a plane. Let A be a point in space with position
vector a and let u,v be two non-zero vectors which are not multiples of each other.
The plane through A spanned by u and v is the set of all points with position vector

{a+ su+ tv : s, t ∈ R}.

5
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6 2. VECTORS IN R
3

2.2. Equation of a plane. A plane has equation

px+ qy + rz = c.

To obtain the equation from the parametric form, write the three expressions for
x, y, z as functions of s, t and eliminate s and t between them.

2.3. Intersection of a line and a plane. Substitute the parametric form of
the line into the equation of the plane and solve for the parameter.

2.4. Equation of a plane in vector form. A vector n perpendicular to a
plane is called a normal to the plane. The plane through the point A with position
vector a with normal n is

(x− a) · n = 0.

A normal to the plane
px+ qy + rz = c

is n = pi+ qj+ rk. Using this normal, the equation can be written

x · n = c.

3. The cross product

Definition. The cross product of two vectors is the vector defined by

(3) a× b =

∣

∣

∣

∣

a2 a3
b2 b3

∣

∣

∣

∣

i−
∣

∣

∣

∣

a1 a3
b1 b3

∣

∣

∣

∣

j+

∣

∣

∣

∣

a1 a2
b1 b2

∣

∣

∣

∣

k.

This is more easily remembered as

a× b =

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3
b1 b2 b3

∣

∣

∣

∣

∣

∣

.

(One might argue that it is poor form to have vectors as entries in determinants,
but since they all occur in the top row, there is no risk of having to take products
of two vectors and everything makes perfect sense.)

Properties.

(1) a× b = −b× a. (And so in particular a× a = 0.)
(2) (a+ b)× c = a× c+ b× c and similarly for the second argument.
(3) (ka)× b = k(a× b) and similarly for the second argument.
(4) |a× b|2 + |a · b|2 = |a|2|b|2
(5) a · (a× b) = b · (a× b) = 0.
(6)

i× j = −j× i = k

j× k = −k× j = i

k× i = −i× k = j

i× i = j× j = k× k = 0

3.1. Geometric characterisation. If a = 0 or b = 0 or if a and b are scalar
multiples of each other then a× b = 0. Otherwise, let θ (where 0 < θ < π) be the
angle between a and b. Then

|a× b| = |a||b| sin θ
and a× b is perpendicular to both a and b and its direction is determined by the
right-hand rule: rotation from a to b is right-handed when looking in the direction
of a× b (see figure 1 for a different interpretation).

(This all follows from properties 4 and 5 above, except for the right-hand rule.
For that, note that it is obeyed for a = i, b = j. Now any pair a,b of vectors can be
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deformed continuously (without the cross product ever being zero) to the pair i, j,
and the cross product can not jump between the two possible handednesses. Thus
it must always be given by the right-hand rule. (This last part of the argument is
not examinable.)

(a) The right-hand rule: a×b. The di-
rection of a×b is determined by point-
ing, with your right index finger, along
a and your second finger along b: your

thumb points in the direction of a×b.

a

b

c = a+ b

R
0

a× b

θ

(b) The magnitude of a×b is the area
of the parallelogram R with vertices
0,a,b and c. Elementary trigonom-
etry shows areaR = |a| |b| sin θ (see

figure 2).

Figure 1. The right-hand rule.

Theorem. [An algebraic identity] Given three vectors, a,b, c we have

a× (b× c) = (a · c)b− (a · b)c.

4. Geometric applications

4.1. Finding the equation of the plane through three points. Let
A,B,C have position vectors a,b, c. Assume that all three points do not lie on a
single line. Then b−c and c−a are parallel to the plane containing A,B,C. Thus

n = (b− a)× (c− a)

is a normal to this plane. The (unique) plane containing A,B,C is thus

(x− a) · n = 0.

(The a could be replaced by b or c.)

4.2. Distance of a point from a plane. The distance of the point P with
position vector p from the plane x · n = c is

|p · n− c|
|n| .

4.3. Distance between parallel planes. The distance between the parallel
planes

x · n = c, x · n = d

is
|c− d|
|n| .
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8 2. VECTORS IN R
3

4.4. Distance between skew lines. Let ℓ1 = {a + tu} and ℓ2 = {b + sv}
be two skew lines. (Skew means that the direction vectors are not multiples of each
other.) The distance between the lines is

|(a− b) · (u× v)|
|u× v| .

(Here, and analogously in the previous few results, the distance between two lines
means the minimum possible distance between a point on one line and a point on
the other. For example, it is zero if and only if the lines intersect.)

ab

c

(b− a)× (c− a)

b− a

c− a

Π

(a) The plane Π containing the points
A,B,C and the plane’s normal vector.

A

P

Π

n

(b) Given a point A on the plane Π :
n · (x− a) = 0, the distance to a point

P is the length of the projection of the
displacement vector p−a onto the nor-
mal n.

a

a

b
b

A

B C

PO

θ

(c) The area of the parallelogram
OACB is twice the area of the triangle
OAB. Area OAB equals 1

2
|OA| |PB|.

which equals |a| |b| sin θ.

A

B
u

u

v

u× vb− a

ℓ1

ℓ2

(d) The distance between skew lines is
the length of the projection of b − a

onto the normal u× v.

Figure 2. Applications of the cross product.
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5. The triple scalar product

Definition. The triple scalar product [a,b, c] of vectors a,b, c is the scalar

[a,b, c] = a · (b× c) =

∣

∣

∣

∣

∣

∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣

∣

∣

∣

∣

∣

.

The equality of a·(b×c) with the first determinant follows from the determinant
form of the cross product. The equality of the two determinants follows from the
fact that the determinant of a matrix and its transpose are equal.

Properties.

(1) [u+ v,a,b] = [u,a,b] + [v,a,b] and similarly for the other two entries.
(2) [ku,a,b] = k[u,a,b] and similarly for the other two entries.
(3) The alternating property: the triple product is multiplied by −1 if any

pair of arguments are exchanged. That is,

[b,a, c] = [c,b,a] = [a, c,b] = −[a,b, c].

(4) The cyclic property: the triple scalar product is unchanged if the argu-
ments are cyclically permuted:

[a,b, c] = [b, c,a] = [c,a,b].

(5) If one vector in a triple product is a multiple of one of the other, then the
triple product is zero.

(6) The triple product is unchanged if a multiple of one of the vectors is added
to either of the others.

The first two properties (and the analogous statements for the dot and cross
products) are often expressed by saying that the triple product is a “linear function
of each of its arguments”.

5.1. An algebraic identity. The cyclic property has many applications, for
example in proving the following important identity.

Theorem.

(a× b) · (u× v) = (a · u)(b · v)− (a · v)(b · u) =
∣

∣

∣

∣

a · u a · v
b · u b · v

∣

∣

∣

∣

.

6. Areas and volumes

6.1. Parallelograms. The area of the parallelogram spanned by a,b is given
by |a× b|.

6.2. Parallelepiped. The parallelepiped spanned by the three vectors a,b, c
is the set

{sa+ tb+ uc : 0 ≤ s, t, u ≤ 1}.
The volume of the parallelepiped is given by |[a,b, c]|. The volume is zero if and
only if all of a,b, c lie in a single plane. Otherwise, [a,b, c] > 0 if the rotation
a → b → c is right-handed when looking in to the body from the origin.
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a

b

c

a× b

O

Q

(a) The volume of the parallelepiped
with sides a,b, c is the area of the
base, |a× b|, multiplied by the height
|OQ| = |c · (a× b)| / |a× b|, so the

volume is |c · (a× b)|.

P

A

Π

n

(b) Given a point A on the plane Π :
n · (x− a) = 0, the distance to a point
P is the length of the projection of the
displacement vector p−a onto the nor-

mal n.

.

a

a

b
b

O

θ

P A

B C

(c) The area of the parallelogram
OACB is twice the area of the triangle

OAB. Area OAB equals 1
2
|OA| |PB|.

which equals |a| |b| sin θ.

.
b− a

A

B

ℓ1

ℓ2

u

u

v

u× v

(d) The distance between skew lines is
the length of the projection of b − a

onto the normal u× v.

Figure 3. Applications of the cross product.
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CHAPTER 3

Linear maps

1. Definitions

1.1. Convention. In this section, we will (almost always) write vectors as
column vectors

a =





a1
a2
a3





rather than as a = a1i + a2j + a3k. We will also think of a as being a point in
3-dimensional space. The dot product of two vectors can be written using matrix
multiplication as

a · b = aTb =
(

a1 a2 a3
)





b1
b2
b3



 .

1.2. Linear maps. Let A be an n× n matrix. The map TA : Rn → R
n given

by

TA : x 7→ Ax

is called the linear map defined by the matrix A. For us, n will always be 2 or 3,
but in fact most of what we say is perfectly OK in any number of dimensions. Let
TA be a linear map as above. Then for all vectors u,v and scalars k we have

• TA(u+ v) = TA(u) + TA(v)
• TA(ku) = kTA(u)

(Indeed, it is is these two properties which are meant by the word “linear”.)

1.3. Columns are the images of the basis vectors. Let c1, c2, c3 be the
vectors which are the columns of the 3× 3 matrix A. Then

TA(i) = TA





1
0
0



 = c1, TA(j) = TA





0
1
0



 = c2, TA(k) = TA





0
0
1



 = c3.

1.4. The determinant and expansion of volumes. Let TA : R3 → R
3 be

a linear map. Then the image under TA of parallelepiped of oriented volume V is a
parallelepiped with volume (detA)V . The same applies to areas of parallelograms
in the 2-dimensional case. Note in particular that if the determinant is negative
then orientations are reversed.

2. Orthogonal matrices

Definition. The square matrix A is orthogonal if for all vectors u,v we have

(Au) · (Av) = u · v.
Since distances between points and angles between vectors can be defined in

terms of dot products, linear maps given by orthognal matrices preserve distances
and angles.

11
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2.1. Characterisation of orthogonal matrices. The following are equiva-
lent:

(1) A is an orthogonal matrix;
(2) ATA = I;
(3) AAT = I;
(4) AT = A−1;
(5) The columns of A are orthogonal unit vectors.

2.2. Determinant of an orthogonal matrix. If A is an orthogonal matrix,
then detA = ±1.

3. Orthogonal 2× 2 matrices

3.1. Rotations and reflections. Let θ be a real number. The linear map
R

2 → R
2 defined by the matrix

Rθ =

(

cos θ − sin θ
sin θ cos θ

)

rotates the plane by an angle θ about the origin and that defined by the matrix

Mθ =

(

cos θ sin θ
sin θ − cos θ

)

reflects the plane in the line through the origin making an angle of θ/2 (measured
anti-clockwise) with the positive x-axis.

3.2. Composition of reflections. For all θ, φ we have

MθMφ = Rθ−φ.

Thus the composition of two reflections of the plane in lines through the origin is
a rotation of the plane about the origin. (Note that the left-hand side corresponds
to doing Mφ first, then Mθ.)

Theorem. Let A be an orthogonal 2 × 2 matrix. If detA = 1 then A = Rθ for
some θ. If detA = −1 then A = Mθ for some θ.
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CHAPTER 4

Conics

1. Standard conics

Definition. A conic is a curve in the plane defined by an equation of the form

lx2 + 2mxy + ny2 + px+ qy = c

where l,m, n, p, q, c are real numbers.

We assume that the solution set is not empty (as it would be in the case
x2 + y2 = −1, for example) nor a single point (as it would be for x2 + y2 = 0) nor
a single line (as it would be for x+ y = 1 or x2 = 0).

1.1. Standard conics. A standard ellipse is a curve

x2

a2
+

y2

b2
= 1

where a ≥ b > 0 are constants.
A standard hyperbola is a curve

x2

a2
− y2

b2
= 1

where a > 0, b > 0 are constants.
A standard parabola is a curve

y2 = 4ax

where a > 0 is a constant.

2. Classification of central conics

Definition. A conic is central if it is of the form

lx2 + 2mxy + ny2 = c.

A central conic can be written as

xTSx = c

where

S =

(

l m
m n

)

, x =

(

x
y

)

2.1. Rotation of coordinates. Let P be a 2 × 2 rotation matrix. Change
coordinates according to

x =

(

x
y

)

= P

(

u
v

)

= Pu.

Then the central conic xTSx = c becomes uTKu = c where the symmetric matrix
K = PTSP .

13
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2.2. Revision. If S is a symmetric 2× 2 matrix, then its eigenvalues are real.
Let λ1, λ2 be eigenvalues with corresponding unit-length orthogonal eigenvectors
c1, c2. Let P be the 2×2 matrix with c1, c2 as columns. Then P is orthogonal and

PTSP = D =

(

λ1 0
0 λ2

)

Theorem. By rotation of the axes, a central conic xTSx = c can be transformed
into one of the following:

(1) A standard ellipse;
(2) A standard hyperbola;
(3) A conic

x2

a2
− y2

b2
= 0

which is the pair of lines bx± ay = 0.

If detS > 0 then we have an ellipse, and if detS < 0 it is a hyperbola or line pair.

Example. Transform the central conic 3x2 + 3y2 + 10xy = 2 to standard form.
The matrix is

S =

(

3 5
5 3

)

.

(detS = −16 and so this is a hyperbola or line pair.) Calculating unit eigenvectors
and eigenvalues we get

λ1 = −2, c1 =

(

1/
√
2

−1/
√
2

)

, λ2 = 8, c2 =

(

1/
√
2

1/
√
2

)

.

So

P =

(

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)

.

Substituting

x =
1√
2
(u+ v), y =

1√
2
(−u+ v)

we get

4v2 − u2 = 1.

(This is a “standard hyperbola with a = 1/2, b = 1”.) Note that the eigenvectors
are the symmetry axes of the standard form.

3. Classification of general conics

3.1. Diagonalisation. By rotation of the axes as for central conics, a general
conic can be transformed to

lx2 + ny2 + px+ qy = c.

3.2. Classification. If neither of l, n are zero, then a translation of coordi-
nates

x = u− p

2l
, y = v − q

2n
converts the conic to a central conic which is an ellipse, hyperbola or line pair,

lu2 + nv2 = f, f = c+
p2

4l
+

q2

4n
.

We can not have both of l, n zero (otherwise we have a line). If one of l, n are
zero then a translation of coordinates transforms the conic to a standard parabola.
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unit circle

X : ellipse

rescaled

x1

x2

x

y

u

v A

B

O

Figure 1. The principal axes of a central conic X . In the coor-

dinates (u, v), the ellipse X is
u2

a2
+

v2

b2
= 1 where a = |OA| and

b = |OB|. Angle ∠AOB is a right angle.

Example. Let us put the conic

85y2 + 240xy + 8y + 15x2 + 9x− 100 = 0

into standard form. We first compute the eigenvalues of the symmetric matrix

S =

(

15 120
120 85

)

.

The characteristic polynomial is det(S − λI) = (15 − λ)(85 − λ) − 1202 = λ2 −
100λ− 13125, with roots λ1 = 175, λ2 = −75.

To find an eigenvector associated to λ1, we must solve (S − λI)x = 0 for x

with λ = λ1. We find

S − 175I =

(

−160 120
120 −90

)

7→
(

−4 3
4 −3

)

=⇒ x1 =

(

3
5
4
5

)

.

Since x2 ⊥ x1, we find the second eigenvector

x2 =

(

4
5

− 3
5

)

.

When we substitute

x = Uu

(

x
y

)

=
1

5
×
(

3 4
−4 3

) (

u
v

)

we get

175u2 − 75v2 + 12v/5 + 59u/5− 100 = 0,

and when we substitute r = u− 59
5 /(2× 175), s = v − 12

5 /(2× (−75)), we get

175r2 − 75s2 − 350629/3500 = 0.
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4. Geometric properties of conics

4.1. Eccentricity. In the standard ellipse, the eccentricity e is defined by the
equation

b2 = a2(1− e2).

Since a ≥ b > 0 we have 0 ≤ e < 1 and e = 0 only when the ellipse is a circle.

4.2. Focus and directrix. A focus of the standard ellipse is one of the points
(±ae, 0). A directrix is one of the lines x = ±a/e.

Theorem. The standard ellipse is the set of all points P in the plane such that

distance of P from the focus (ae, 0)

distance of P from the directrix x = a/e
= e.

By symmetry, the same holds for the other focus and the other directrix.

Theorem. The sum of the distances from a point on an ellipse to the two foci is
a constant.

5. Hyperbolas and parabolas

5.1. Hyperbolas. The eccentricity of the standard hyperbola is defined by
the equation

b2 = a2(e2 − 1).

Thus, e > 1.
A focus of the standard hyperbola is one of the points (±ae, 0). A directrix of

the standard hyperbola is one of the lines x = ±a/e.
The standard hyperbola is the set of all points P in the plane such that

distance of P from the focus (ae, 0)

distance of P from the directrix x = a/e
= e.

5.2. Parabolas. The focus of the standard parabola is the point (a, 0). The
directrix of the standard hyperbola is the line x = −a.

The standard parabola is the set of all points P in the plane such that

distance of P from the focus (a, 0)

distance of P from the directrix x = −a
= 1.

6. Intersection problems

6.1. Intersection of a line with a conic. To find the intersection of a line
y = mx+ c with a conic, substitute y into the equation of the conic and solve the
resulting quadratic equation for x. The quadratic will have 0,1 or 2 real solutions.
This corresponds to the the line missing the conic, being tangent to the conic and
intersecting the conic twice.

6.2. Intersection of a conic with a conic. Two distinct conics have at
most 4 real points of intersection. To determine the points of intersection, it is
useful to have the conics in standard form. In general, this can only be done for
one of the two conics. For centred conics, though, we can do better.
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6.2.1. Intersection of a centred conic with a centred conic. Let

X0 : a0x
2 + 20b0x0y + c0y

2 = f x′Sx = f

X1 : a1x
2 + 21b1x1y + c1y

2 = g x′Rx = g

where

x =

[

x
y

]

be two centred conics. We know that to solve the equations

X0 : αu2 + βv2 = f

X1 : γu2 + δv2 = g

is straightforward. So let’s see if we can find coordinates that do this.

7. The standard form of two centred conics

In figure 2, we see there are two distinguished “axes” determined by the con-
dition that a rescaling of X1 is tangent to X0. The condition is that at the point x,
the normal vector Rx to X1 should be a scalar multiple of the normal vector Sx of
X0:

Rx = λSx (generalised eigenvector equation)(4)

This condition implies that

det(R− λS) = 0, (generalised eigenvalue equation)(5)

which is a quadratic equation in λ. If (λ1,x1) and (λ2,x2) are two non-trivial
solutions to these equations, then we introduce the coordinates

[

x
y

]

= U u u =

[

u
v

]

U =
[

x1 x2
]

so that

X0 : u′U ′SUu = f X1 : u′U ′RUu = g,

and

U ′SU =

[

x′
1Sx1 x′

1Sx2

x′
2Sx1 x′

2Sx2

]

=

[

α 0
0 β

]

U ′RU =

[

x′
1Rx1 x′

1Rx2

x′
2Rx1 x′

2Rx2

]

=

[

αλ1 0
0 βλ2

]

(6)

which gives

X0 : αu2 + βv2 = f X1 : λ1αu
2 + λ2βv

2 = g,

the desired form with γ = λ1α and δ = λ2β. As a final step, if αβ 6= 0, then we
can introduce a final change of variables

u =
r

√

|α|
v =

s
√

|β|
giving

X0 : r2 + s2 = f
X1 : λ1r

2 + λ2s
2 = g,

}

if α, β > 0(7)

X0 : r2 − s2 = f
X1 : λ1r

2 − λ2s
2 = g,

}

if α > 0 > β(8)

and the case where 0 > α, β can be dealt with by reversing the sign of α, β and f, g
and using (7).
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Remark. In 6, we have used the fact, proven in class, that if λ1 6= λ2, then
x′
2Sx1 = 0 and similarly for R. To see this, observe

0 = x′
2Rx1 − x′

1Rx2 since R′ = R

= x′
2(λ1Sx1)− x′

1(λ2Sx2) due to (4)

= (λ1 − λ2)x
′
2Sx1 since S′ = S

=⇒ x′
2Sx1 = 0 since λ1 − λ2 6= 0,

=⇒ x′
2Rx1 = 0 since one of λ1, λ2 6= 0.

X0: ellipse

X1: ellipse

rescaled

x1

x2

x

y

u
v A

B

O

Figure 2. The centred conics X0 and X1. In the coordinates

(u, v), the ellipse X0 is u2 + v2 = 1 and X1 is
u2

a2
+

v2

b2
= 1 where

a = |OA| and b = |OB|. Angle ∠AOB is not necessarily a right
angle.

Example. Let us do a worked example to illustrate the theory. Let

X0 : 23 y2 + 24x y + 2x2 = 1 X1 : 123 y2 + 216x y + 102x2 = 1

with the associated symmetric matrices

S =

[

2 12
12 23

]

R =

[

102 108
108 123

]

.

We compute that the generalised characteristic polynomial is

det(R− λS) = (123− 23λ)(102− 2λ)− (108− 12λ)2 = 98(λ2 − 9)

=⇒ roots λ = 3,−3.

When we solve the generalised eigenvector equation (R− λS)x = 0 for x, we get

λ1 = 3 : x1 =

[

3
−4

]

λ2 = −3 : x2 =

[

4
−3

]

.

We let x = Uu, as above, and deduce that

X0 :− 49v2 + 98u2 = 1 X1 : 147v2 + 294u2 = 1,

(so α = 98, β = −49) and with the substitution u = r/(7
√
2), v = s/7,

X0 :− s2 + r2 = 1 X1 : 3s2 + 3r2 = 1.

To sketch the two conics in the (r, s) coordinates, we note that we can param-
eterise each

X0 : r = ± cosh(t), s = sinh(t) X1 : r = cos(t)/
√
3, s = sin(t)/

√
3.
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To get the sketch in the original (x, y) coordinates, we simply use the transforma-
tions (r, s) → (u, v) → (x, y) that we defined above. We know, in particular, that
the r-axis (resp. s-axis) gets mapped to the line Rx1 (resp. Rx2).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

r

s

(a) X0 (in blue) and X1 (in red). The conic in green is X0

with constant −1 instead of +1.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

x

y

(b) X0 (in blue) and X1 (in red). The conic in green is X0 with
constant −1 instead of +1. The black lines are the generalised

eigenspaces. One can see that by rescaling X1, it becomes
tangent to the two hyperbola along these lines.

Figure 3.
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CHAPTER 5

Induction

1. Sigma notation

Definition. We use the notation

n
∑

k=1

ak = a1 + a2 + · · ·+ an.

which defines the Σ operator. Clearly, the sum does not need to start at 1 or finish
at n. Thus

2
∑

k=−1

k2 = (−1)2 + 02 + 12 + 22 = 6.

2. Induction

Definition. Induction (or “mathematical induction” or “the principle of mathe-
matical induction”) is the the observation that if one wishes to prove that a state-
ment involving a natural number n is true for all n, it suffices to prove firstly that
it holds when n = 1 and secondly that if it holds for n, then it holds for n+ 1.

Example. Show that
n
∑

k=1

k =
n(n+ 1)

2
.

Solution:
1

∑

k=1

k = 1 =
1(1 + 1)

2

and so the claimed statement certainly holds when n = 1. Now let us assume that
the statement holds for a particular n. Then

n+1
∑

k=1

k =
n
∑

k=1

k + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (by the result for n)

= (n+ 1)
(n

2
+ 1

)

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2

and so the statement is true for n+ 1, and hence for all n by induction.

The result for n is often called the inductive hypothesis. Thus, the annotation
“by the result for n” might be replaced by “by the inductive hypothesis”.

21
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2.1. Variations. There are numerous variations. One (sometimes called “strong
induction”) is that instead of proving truth for n implies truth for n+1, you prove
truth for all values up to and including n implies truth for n+ 1.

A simpler variation is that one can prove (for example) that something is true
for all natural numbers n ≥ 4 by proving that it is true for n = 4 and proving that
provided n ≥ 4, truth for n implies truth for n + 1. Another minor variation is
given in the following example.

Example. Prove that for every natural number n ≥ 2 we have 3n > 3n.
Solution: This is true for n = 2 since 9 > 6. Now suppose it is true for a

particular n then

3n+1 = 3.3n > 3.3n by the inductive hypothesis

= 3n+ 6n

> 3n+ 3 = 3(n+ 1) since 6n > 3 for n ≥ 2.

Hence the result is true by induction.
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CHAPTER 6

Sequences and Series

1. Sequences

Definition. A sequence is a function

n 7→ f(n) n ∈ Z, n ≥ b,

where b is some “base case.”

Notation. Although sequences are functions, they are special functions, and we
use special notation to indicate sequences. Amongst the notations for a sequence
are

enumeration: a1, a2, . . . , an, . . . , 1, 1, 2, 3, 5, . . . ,

formula: an = f(n), an = 1/n,

set-like: {an}∞n=1, (an)
∞
n=1 {1/n}∞n=1,

terse: an, (an) 1/n, (1/n).

We will favour the first two notations, but be aware that the last two are frequently
used as shorthand.

2. Arithmetic and geometric sequences

Definition. The arithmetic sequence with first term a and common difference d
is the sequence

a, a+ d, a+ 2d, a+ 3d, . . .

In other words, it is the sequence (ak) where

ak = a+ (k − 1)d.

Definition. The geometric sequence with first term a and common ratio r is the
sequence

a, ar, ar2, ar3, . . .

In other words, it is the sequence (ak) where

ak = ark−1.

3. Convergence of sequences

We have talked about the idea of sequences tending to some sort of “limiting
value”. For example, arithmetic sequences do not have a limit (unless d = 0). On
the other hand, geometric sequences with a 6= 0 have a limit of 0 if |r| < 1, a limit
of a if r = 1 and no limit if r > 1 or r ≤ −1. It took many years for people to see
that the best way of rigorously encapsulating the idea of a sequence tending to a
limit is the following definition.

Definition. The sequence (ak) converges to 0 if, for each ǫ > 0, there are only
finitely many k such that |ak| > ǫ.

Equivalently, here is a more standard definition

23
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Definition. The sequence (ak) converges to 0 if, for each ǫ > 0, there is an
N = N(ǫ) such that k ≥ N implies |ak| < ǫ.

ǫ

−ǫ

cutoff N

Figure 1. Convergence to 0 and ǫ-corridors. For each ǫ > 0, there
is a cutoff N such that all terms to the right of N are within ǫ of
0.

Example. Let’s show that ak = 1/k converges to 0.

Rough Work. Let ǫ > 0 be fixed. If |ak| > ǫ, then 1/k > ǫ so k < 1/ǫ.
End of Rough Work

Proof. Let ǫ > 0 be given. Our rough work shows that there are only finitely (at
most 1/ǫ) terms in the sequence 1/k such that 1/k > ǫ. Therefore, from definition
(3), 1/k converges to 0.

Let’s define a limit.

Definition. The sequence (ak) converges to the limit l (or “has limit l” or “con-
verges to l” or “tends to l”) if for all ǫ > 0 there exists N ∈ N such that |an− l| < ǫ
if n ≥ N .

In other words, (ak) converges to l iff (ak − l) converges to 0.

Notation. The notation
lim
n→∞

an = l

means that the sequence (am) converges to the limit l.

Example. Does the sequence (an) where

an = n/(n+ 1)

have a limit? If so, give a proof.

Rough Work. When faced with such a question, first try and decide if there is a
limit. Here, it is clear that when n is very large, an is very close to 1. Therefore
one guesses the limit is 1. Next, you have to try and see how large n has to be in
order to have

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

< ǫ.

To this end, we calculate

n

n+ 1
− 1 =

n− (n+ 1)

n+ 1
=

−1

n+ 1
.

Thus

|an − 1| = 1

n+ 1
<

1

n
.

So we want 1/n < ǫ, so it is OK provided n > 1/ǫ. Thus, we must choose N to
be a natural number > 1/ǫ. We now have everything we need, and the trick is to
write up the proof that follows and then throw away the calculations we have just
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done which are not part of it!. Before we do that, just notice how I “backed off”
a little and just used |an − l| < 1/n rather than the stricter |an − l| = 1/(n + 1).
This makes the calculation of N a shade simpler. The point is you don’t need to

find the smallest possible N , you just need one that does the job.

End of Rough Work

Proof. Here is the proof that (an) as above has limit one. Let ǫ > 0 be given. Let
N be a natural number larger than 1/ǫ. If n ≥ N then

|an − 1| =
∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−1

n+ 1

∣

∣

∣

∣

<
1

n
<

1

N
< ǫ.

Theorem. The sequence (an) where

an =
1

nk

converges to zero for all real numbers k > 0.

Definition. A sequence (an) is bounded above (resp. below) if there exists M ∈ R

such that an ≤ M (resp. an ≥ M) for all n. A sequence is bounded if it is bounded
above and below. A sequence (an) is increasing if an+1 ≥ an for all n.

Theorem. A bounded, increasing sequence converges. (This theorem, for which
we give no proof, depends on quite subtle properties of the real numbers. A proof
will be given in “Foundations of Calculus” next year.)

With the aid of the above theorem, one can prove

Theorem.

e = lim
n→∞

(

1 +
1

n

)n

,

= lim
n→∞

xn

where xn+1 = xn +
1

n!
and x0 = 0.

Exercises.

In the following exercises, “prove” means “show, using the definition.”
(1) Let k > 0 be a fixed real number. Prove that an = n−k converges to 0.

(2) Prove that lim
n→∞

3n2 − 1

5n2 + 2n+ 1
=

3

5
.

(3) Prove that lim
n→∞

n2 + 3n− 1

5n4 + 2n3 + 9
= 0.

(4) Let xk =
1

k!
. Prove that limk→∞ xk = 0.

(5) Prove that lim
n→∞

2n

n!
= 0.

4. Sequences that tend to infinity

Definition. A sequence (an)
∞
n=1 is unbounded if it is not bounded (definition (3)).

Equivalently, it is bounded if, for each B > 0 there are infinitely many n ∈ N such
that |an| > B.

Example. Let

an = (−1)n lnn.

Prove that an is an unbounded sequence.
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Rough Work. Similar to proofs of convergence, let us first intuit the proof. Recall
that if y = ex, then ln y = x. We know therefore that ln is a monotone increasing
function and that as y grows larger, so must x—without bound.
End of Rough Work

Proof. Let B > 0 be given. We know that if N > eB , then since ln is an increasing
function, lnN > ln(eB) = B. Therefore, choose N > eB . If

n ≥ N then |an| = lnn ≥ lnN ≥ B.

This proves that all an with n ≥ N have modulus larger than B, which proves that
an is unbounded.

Definition. A sequence (an)
∞
n=1 tends to +∞ (resp. tends to −∞) if, for each

B > 0 there is an N = N(B) such that if n ≥ N then an > B (resp. an < −B).

Example. Convince yourself that lnn tends to +∞.

Example. Let

xn =
5n2 − 4

4n− 1
.

Prove that xn tends to +∞.

Rough Work. We see that xn ∼ 5n/4 > n as n gets large, so xn should tend to ∞
as n tends to ∞. Indeed, since we want to show that xn gets large, we will find a
lower bound for its numerator and an upper bound for its denominator.

5n2 − 4 ≥ 4n4 + (n2 − 2) 4n− 1 < 4n

≥ 4n2 if n ≥ 2.

Therefore

xn >
4n2

4n
if n ≥ 2,

= n.

End of Rough Work

Proof. Let B > 0 be given. Choose the cutoff N to be at least B and 2; we can
do this by choosing N > B + 2. Then

n ≥ N implies xn > n since n ≥ N > 2

≥ N since n ≥ N

≥ B since N > B.

This proves that xn tends to +∞.

5. Convergence of series

Definition. A series is an infinite sum
∞
∑

k=1

ak.

The n-th partial sum of the series is

sn =
n
∑

k=1

ak.

The series is said to converge to S if

lim
n→∞

sn = S.

A series that does not converge is said to diverge.
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A series whose partial sums sn are increasing (resp. decreasing) either converges
to a limit S or the partial sums tend to +∞ (resp. −∞). In the latter case, where
the partial sums increase (resp. decrease) without bound, we say that the series
diverges.

Theorem. Let (an) be the geometric series ak = ark−1 with a 6= 0 and r 6= 1.
The partial sums are given by

sn =

n
∑

k=1

ak = a+ ar + · · ·+ arn−1 = a
1− rn

1− r
.

The series
∑∞

k=1 ak diverges if |r| ≥ 1. If |r| < 1 then the series converges and

∞
∑

k=1

ak =
a

1− r
.

Proof. Let us observe that rsn = ar+ · · ·+arn = a+ar+ · · ·+arn−1+arn−a =
sn + arn − a. Solving for sn, we get sn = a(rn − 1)/(r − 1) for r 6= 1.

If |r| > 1, then it is clear that |sn| = a
|r−1| × |rn − 1| ≥ a

|r−1| × (|r|n − 1). Since

|r| > 1, this sequence tends to +∞, so the series diverges.
If r = 1, then |sn| = |a| × n, which also tends to +∞.
If r = −1, then sn = a if n is even and 0 if n is odd. Since a 6= 0, the sequence

sn does not converge. Therefore, the series diverges.

Theorem. The harmonic series
∞
∑

k=1

1

k

diverges.

Proof. Let us observe that if 0 < k ≤ x, then 1/k ≥ 1/x. Therefore, integrating
over the interval [k, k + 1],

1

k
≥

∫ k+1

k

dx

x
= ln(k + 1)− ln(k).

Summing from k = 1, . . . , n, we get that the n-th partial sum sn satisfies

sn =
n
∑

k=1

1

k

n
∑

k=1

∫ k+1

k

dx

x
=

∫ n+1

1

dx

x
= ln(n+ 1).

Now, we showed above that an = lnn tends to +∞ as n → ∞. Therefore, sn must
also tend to +∞ as n → ∞.

Remark. From the bound 1/x ≥ 1/(k + 1) for x ≤ k + 1, one can integrate over

[k, k+1] and sum from k = 1, . . . , n to obtain
∫ n+1

1
dx
x ≥ ∑n+1

k=2
1
k = sn+1 − 1. This

means that sn ≥ ln(n+ 1) ≥ sn − n
n+1 , so the divergence of the harmonic series is

slow (logarithmic).
It is a deep fact that the difference sn − ln(n + 1) converges to a constant,

commonly called the Euler-Mascheroni constant, denoted by γ. It is approximately
0.5772. Despite the fact that Euler first defined γ in the 18-th century, it is currently
unknown if γ is a rational number.

Theorem. The series
∞
∑

k=1

1

k2

converges.
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Proof. Let sn =
∑n

k=1 k
−2 be the n-th partial sum of our series. Since sn+1 =

sn + (n + 1)−2 > sn, the sequence of partial sums is increasing. If we prove this
sequence is bounded above, then we conclude it converges. Let us observe

1

(k + 1)2
≤ 1

k(k + 1)
so

rn =

n
∑

k=1

1

(k + 1)2
≤

n
∑

k=1

1

k(k + 1)
= 1− 1

n+ 1
,

since
n
∑

k=1

1

k(k + 1)
=

n
∑

k=1

1

k
− 1

(k + 1)
.

=

(

1− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · ·+
(

1

n
− 1

n+ 1

)

and all but the first and last terms are cancelled. Therefore rn ≤ 1 for all n.
This leads us to conclude that our partial sums sn+1 = rn + 1 ≤ 2 for all

n. Therefore, the partial sums sn are increasing and bounded above and hence
converge.

Remark. In fact,
∑∞

k=1 1/k
2 = π2/6, but that is not quite so easy to show!

Theorem. Let an, bn be sequences such that 0 ≤ an ≤ bn for all n ∈ N. If
∑∞

n=1 bn
converges, then

∑∞
n=1 an converges.

Proof. Let sn =
∑n

k=1 ak and rn =
∑n

k=1 bk be the partial sums for the sequences
ak and bk, respectively. Let r = limn→∞ rn. We know that

ak ≤ bk for all k, so, summing

sn ≤ rn for all n.

And, since ak, bk ≥ 0, we know both sn and rn are non-dereasing and

rn ≤ r for all n.

Therefore, sn is an non-dereasing sequence that is bounded above. Therefore it
converges.

Example. Let us prove that
∑∞

k=1 k
−p converges for p ≥ 2 (in fact, it converges

for p > 1).
Since p ≥ 2, kp ≥ k2 so 0 < k−p ≤ k−2 for k ∈ N. Since the series

∑∞
k=1 k

−2

converges, the comparison theorem shows that
∑∞

k=1 k
−p converges.

Exercises.

(1) Let p > 1. Show that

n
∑

k=1

k−p converges.

[Hint: Let rn = 1+
∫ n+1

1
x−p dx for all n ∈ N; now mimic the proof of the

comparison theorem.]

(2) Show that the series

∞
∑

n=1

3n+ 1

4n2 + 1
diverges.
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Taylor-Maclaurin Series

1. Taylor series

Let f : (a, b) → R be a real-valued function of one variable that is infinitely
differentiable. Let x0 ∈ (a, b).

Definition. The formal series

T (x) = f(x0) + (x− x0)f
′(x0) +

1

2
(x− x0)

2f ′′(x0) + · · ·+ 1

n!
(x− x0)

n f (n)(x0) + · · ·

=
∑

n=0

1

n!
(x− x0)

nf (n)(x0)

is called the Taylor series of f about x0. If x0 = 0, we call T the Maclaurin series

of f .

Examples.

(1) Let f(x) = exp(x). Since f ′(x) = f(x), we see that f (n)(x) = exp(x) for
all n ≥ 0 and all x. In particular, f (n)(0) = 1 for all n ≥ 0. Therefore,
the Taylor series of f about x = 0 is

T (x) =

∞
∑

n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+

x4

24
+

x5

120
+ · · ·

(2) Let f(x) = ln(1− x). Let us compute the Taylor series of f about x = 0.
Observe that

f(0) = 0 f ′(0) = − 1

(1− x)1

∣

∣

∣

∣

x=0

= −1 = −0!

f ′′(0) = − 1

(1− x)2

∣

∣

∣

∣

x=0

= −1! f ′′′(0) = − 1 · 2
(1− x)3

∣

∣

∣

∣

x=0

= −2!

and, by induction, the k-th derivative of f at x = 0 is

f (k)(0) = − (k − 1)!

(1− x)k

∣

∣

∣

∣

x=0

= −(k − 1)! for k ≥ 1, so

T (x) =
∑

k=1

−xk

k

= −x− x2

2
− x3

3
− x4

4
− x5

5
+ · · ·

Theorem. Let f be function on the real line such that all derivatives of f exist.
Consider the interval [0, x] and suppose that there exists a real number M such
that |f (n)(t)| ≤ Mn for all n ∈ N and t ∈ [0, x]. Then the Taylor-Maclaurin series
for f

∞
∑

k=1

f (k)(0)
xk

k!

29
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converges to f(x).

Remark. The proof of this theorem is beyond this course; you will see it in
Foundations of Calculus next year.

Corollary. The conditions of the Theorem apply for all x for the functions
exp, sin, cos. Thus it is really true that

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .

sinx = x− x3

3!
+

x5

5!
+ . . .

cosx = 1− x2

2!
+

x4

4!
+ . . .

Remark. Taylor series are not guaranteed to converge even for the most “reason-
able” functions. The Taylor series of

f(x) =
1

1 + x2

about zero is
1− x2 + x4 − x6 + x8 . . . .

This is a geometric series of common ratio −x2 and it converges to f(x) for |x| < 1
but outside of that it diverges.
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Sequences, lists, etc, in Maple

See also the Maple/Maxima worksheet for this section.

1. Iteration

Let f : R → R be a scalar-valued function of 1 variable. Define a sequence

xn+1 = f(xn) for n ≥ 1,(9)

x0 = given.

We say that the sequence xn is obtained by iterating with a given initial condition.

Example. A logistic map is defined as f(x) = 4x(1 − x) for x ∈ R. For x0 = x,
we define the sequence xn by (9).

When x0 < 0, 1 − x0 > 1, so x1 = 4x0(1 − x0) < 4x0. By an easy induction
argument (do it!), it follows that xn < 4nx0, so xn tends to −∞ as n → ∞.

When x0 > 1, x1 < 0, so as in the first case, xn tends to −∞ as n → ∞.
When x0 ∈ [0, 1], 1 − x0 ∈ [0, 1], and so 0 ≤ 4x0(1 − x0) ≤ 1. Therefore

x1 ∈ [0, 1]. By a simple induction argument (do it!), it follows that xn ∈ [0, 1] for
all n ∈ N.

The sequence (xn)n∈N can be graphed by plotting (xn, xn+1) for n ≥ 0. If we
add line segments from (xn, xn+1) to (xn+1, xn+1) to (xn+1, xn+2), we end up with
a cobweb diagram.

x
n
+

1

xn

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 1. A cobweb diagram for the logistic map, with x0 = 0.15.

31
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2. Fixed points

2.1. Fixed points and iteration. A fixed point of a function f is a point
a such that f(a) = a. Consider sequences x0, x1, x2, . . . generated as in (9). Let
a be a fixed point of f . Then a is said to be attracting if when you choose x0

sufficiently close to a, the sequence x0, x1, x2, . . . approaches a. Otherwise it is said
to be repelling.

Theorem. Let a be a fixed point of f . If |f ′(a)| < 1, then the fixed point is
attracting; if |f ′(a)| > 1, then the fixed point is repelling.

Example. Let f(x) = 4x(1 − x) be the logistic map of the previous example. It
has a fixed point at a = 0, where f ′(0) = 4, and a second fixed point at a = 3/4
with f ′(a) = −2. Therefore both fixed points are repelling.

2.2. Solving equations by iteration. To solve the equation f(x) = x, one
can guess a solution x0 and generate a sequence as above. If the sequence approaches
a fixed value, that value is a solution of the equation. The Theorem above then
tells us that if there is a solution x = a of the equation and |f ′(a)| < 1 then this
method will find it (to as good an accuracy as we desire), at least if our initial guess
is good enough. On the other hand, if |f ′(a)| > 1 then it can not work.

Example. Let us solve the equation

x2 = 2

using iteration. To do this, let

(10) fc(x) = x+ c(x2 − 2).

We see that f(
√
2) =

√
2 and f ′(

√
2) = 1+ 2c

√
2 for any value of c. Since we want

∣

∣f ′(
√
2)
∣

∣ < 1, we can choose any c between −1/
√
2 and 0, so we choose c = −1/10.

Table 2 shows a sample of the sequence with x0 = 1.3. Figure 3 shows that this
sequence converges to

√
2 roughly like 10−0.14n−0.92.

n xn n xn

0 1.30000000 40 1.41421336
1 1.33100000 41 1.41421342
2 1.35384390 42 1.41421346
3 1.37055457 43 1.41421349
4 1.38271259 44 1.41421351
5 1.39152318 45 1.41421352
6 1.39788950 46 1.41421353
7 1.40248000 47 1.41421354
8 1.40578498 48 1.41421355
9 1.40816184 49 1.41421355
10 1.40986986 50 1.41421356

Figure 2. The sequence xn versus n for selected values. This
sequence converges slowly to

√
2 ∼= 1.414213562.

Example. Let us continue with the previous example, but let us observe that we
cheated when we chose c = −1/(2×

√
2): this requires us to know the value of

√
2!

We can avoid this cheat, by noting that x ∼=
√
2 and substituting c = −1/(2x) to
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-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  10  20  30  40  50

-.144*n-.924
ǫ
n

=
lo
g
1
0
(∣ ∣ ∣
x
n

−
√
2
∣ ∣ ∣
)

n

ǫn

(a) The sequence xn+1 = fc(xn),

with c = −1/10, converges to
√
2.

The astute reader will observe that

log10

∣

∣

∣
f ′(

√
2)
∣

∣

∣

∼= −0.144 and that

log10(
∣

∣

∣
x0 −

√
2
∣

∣

∣
) ∼= −0.924.

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  2  4  6  8  10

-1.39*2

ǫ
n

=
lo
g
1
0
(∣ ∣ ∣
x
n

−
√
2
∣ ∣ ∣
)

n

n

ǫn

(b) The sequence xn+1 = fc(xn), with

c = −2−
3
2 , converges to

√
2 quite

quickly. The astute reader will note
that f ′

c
(
√
2) = 0 for this value of c. It

is worth noting that after 10 iterations
there are over 1400 significant digits.

-1600

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0  2  4  6  8  10

-1.38*2

ǫ
n

=
lo
g
1
0
(∣ ∣ ∣
x
n

−
√
2
∣ ∣ ∣
)

n

n

ǫn

(c) The sequence xn+1 = fc(xn), with

c = −1/(2x), converges to
√
2. The as-

tute reader will observe that the error

behaves very similarly to (b).

Figure 3. The sequence ǫn = log10(
∣

∣xn −
√
2
∣

∣) measures the ap-
proximate number of significant digits in the sequence xn.

get the map

g(x) = fc(x)|c=−1/(2x) =
x

2
+

1

x
(11)

xn+1 = g(xn), x0 = given.(12)

Figure 3.c shows how quickly this sequence converges to
√
2.
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One derives that the error en =
∣

∣xn −
√
2
∣

∣ equals approximately b2
n

, where
b = e0, by the following reasoning:

en+1 =
∣

∣

∣xn+1 −
√
2
∣

∣

∣ by definition

=
∣

∣

∣
g(xn)−

√
2
∣

∣

∣

=
∣

∣

∣g(
√
2 + en)−

√
2
∣

∣

∣

=

∣

∣

∣

∣

g(
√
2)−

√
2 + g′(

√
2) en +

1

2
g′′(

√
2) e2n + · · ·

∣

∣

∣

∣

by Taylor expanding g

= a e2n + · · · a =
1

2
√
2
,

where it has been used that g fixes
√
2 and g′ vanishes at

√
2. To solve the recurrence

relation en+1 = ae2n, with e0 = b given, one guesses a solution in the form

en = bpn and derives that

pn+1 = 2pn + d where d = log(a)/ log(b), p0 = 1.

One solves this recurrence and gets

pn = (d+ 1)× 2n − d, log10 en
∼= log10(b)× (d+ 1)× 2n for large n.

When one computes log10(b) × (d + 1) with x0 = 1.3, one arrives at a figure of
−1.3938, which is quite close to that estimated in figure 3.c.

3. Maple and Maxima

3.1. Maxima CAS. Maxima is a free and open source computer algebra pack-
age that can be downloaded from its homepage at http://maxima.sourceforge.net/.

The cobweb diagram in 1 is created with the following code:

load(dynamics);

staircase(4*x*(1-x), .15, 11, [x, 0, 1.01]);

while the data used to generate the graphs in figure 3 is created from

c2bf(x) := rectform(expand(bfloat(expand(x))));

iter(f,x0,N,[opt]) := block([x1,l],

l : if opt=[] then [] else append([[0,x0]],create_list(0,i,1,N)),

for i:1 thru N do (

x1 : c2bf(apply(f,[x0])),

x0 : x1,

if opt#[] then l[i+1] : [i,x1]

),

return(if opt=[] then x1 else l));

f(x) := x + c*(x^2-2);

define(g(x), subst(c=-1/(2*x),f(x)));

fpprec : 18;

iter(f,1.3,50,true),c=-1/10;

fpprec : 2000;

iter(f,1.3,10,true),c=-1/2^(3/2);

iter(g,1.3,10,true);

The function iter computes the sequence xn for n = 0, . . . , N given x0 =x0.
The functions f and g are defined as in (10) and (11). The constant fpprec

sets the precision of the floating point computations–since after 50 iterations, the

http://maxima.sourceforge.net/
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first sequence is only within 10−8 of
√
2, we choose a relatively small number of

significant digits for the first and then a large number for the other computations.

3.2. Maple. Maple is a commercial computer algebra package that is widely
used in the School of Mathematics.

Listing 8.1. Maple code for a cobweb diagram
f := x −> 4∗x∗(1−x ) ;

n1 := 15 ;

a := 0 ;

b := 1 ;

p i c := p lo t ( x , x=a . . b , c o l o r=black ) :

p i c := p i c union p l o t ( f , a . . b , c o l o r=black ) :

f o r i from 1 to n1 do

x1:= f ( x0 ) :

p i c := p i c union p l o t ( [ [ x0 , x0 ] , [ x0 , x1 ] , [ x1 , x1 ] ] , c o l o r=blue ) :

x0:=x1 :

od :

d i sp l ay ( p i c ) ;
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