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The University of Edinburgh School of Mathematics
2010 (U01457)

Geometry & Convergence

Problem Sheet 5

Assessment 5 due by 12.10 on Friday, 12 March 2010.

Tutorial 5 on Tuesday, 9 March 2010.

Pretutorial questions: 3, and 12.

Tutorial questions: 4, 5, 6, and 11.

Handin questions: 1, 2, 7, and 10.

(1†) Prove by induction that, for fixed a 6= 1 and n = 1, 2, . . .

1 + a+ a2 + . . .+ an−1 =
an − 1

a− 1
.

(2†) Define an (n = 0, 1, 2, . . .) by a0 = 1 and an+1 = an + 2n + 1. Show
by induction that

an = 2n + n (n = 0, 1, 2, . . .).

(3∗∗) A certain algorithm takes time T (n) to sort a set of 2n elements,
and time T (n+1) = T (n)×n2 to sort a set of 2n+1 elements. Show
by induction that

T (n) = ((n− 1)!)2T (1) (n = 1, 2, . . .).

(4∗) Prove by induction that 3n−2n2−1 is divisible by 8, for n = 1, 2, . . ..

(5∗) The Fibonacci numbers fn are defined by f1 = f2 = 1 and fn+1 =
fn + fn−1 for n ≥ 2. Prove by strong induction that

φn−2 ≤ fn ≤ φn (n = 1, 2, . . .),

where φ =
1

2
(1 +

√
5), the so-called Golden Ratio.

[Use the fact that 1 + φ = φ2.]

(6∗) Let ⌊x⌋ be the floor of x, i.e. the largest integer ≤ x. Prove by
induction that

n =
⌊n

2

⌋

+

⌊

n+ 1

2

⌋

(n = 1, 2, . . .).

(7†) What is wrong with the following inductive argument:

“ Theorem. Let x > 0 be fixed. Then xn−1 = 1 for n = 1, 2, . . ..

Proof. If n = 1 then x1−1 = x0 = 1, so result true for n = 1.
Assuming the result true for 1, 2, . . ., we have

x(n+1)−1 = xn = xn−1 × xn−1/xn−2 = 1× 1/1 = 1,

so that the result holds for n+ 1 as well.” (Knuth)

(8) Show that if, for some proposition P (n),

(a) P (1) is true

(b) P (n) true =⇒ P (2n) and P (2n+ 1) both true (n = 1, 2, . . .)

then P (n) is true for n = 1, 2, . . ..

[Use induction on the length of the binary representation of n].

(9) (Esoteric variant of induction.) Show that if, for some statement
P2(n),

(a) P2(1) is true

(b) P2(n) true =⇒ P2(2n) true (n = 1, 2, . . .)

(c) P2(n+ 1) true =⇒ P2(n) true (!) (n = 1, 2, . . .)

then P2(n) is true for n = 1, 2, . . ..

Convergence of sequences and series

(10†) Define a sequence (tn)n∈N by tn =
2n+ 1

n3
. Prove that this sequence

tends to 0 as n → ∞.
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(11∗) Define a sequence (an)n∈N by an =
2n2 − 1

n3 − 2
. Prove that this se-

quence tends to 0 as n → ∞.

(12∗∗) Prove that the sequence (tn)n∈N defined by tn =
2n+ sinn

3n
tends

to a limit as n → ∞.

(13) Suppose that the sequence (an)n∈N tends to the limit A, while the
sequence (bn)n∈N tends to B. Prove that the sequence (an + bn)n∈N
tends to A+B.

(14) Suppose that the sequence (an)n∈N tends to the limit A, while the
sequence (bn)n∈N tends to B. Prove that the sequence (an · bn)n∈N
tends to AB.

(15) Suppose that the sequence (an)n∈N tends to a limit A, and
the sequence (bn)n∈N tends to a limit B. Does the sequence
a1, b1, a2, b2, . . . , an, bn, . . . tend to a limit?

(16) Prove that the series
∑∞

n=1

1

n2 + 1
converges.

(17) Prove that the series
∑∞

n=1

1

n+ 100000
diverges.

(18) (Harder) You know (e.g. from the Group Theory course) that the
rationals are countable. This means that there is a sequence (tn)n∈N
that contains each rational number exactly once. (In fact there are
many such sequences, obtained by re-ordering (tn)n∈N in any way
you want to.)

• Prove that (tn)n∈N does not tend to a limit.

• On the other hand, prove that for every real number q there is
a subsequence of (tn)n∈N that tends to q.

(19) Evaluate the recurring decimal 0.142857142857 . . . exactly as a ra-
tional.


