The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 5

Assessment 5 due by 12.10 on Friday, 12 March 2010. Tutorial 5 on Tuesday, 9 March 2010.

Pretutorial questions: 3, and 12.

Tutorial questions: 4, 5, 6, and 11.

Handin questions: 1, 2, 7, and 10.

 (1^{\dagger}) Prove by induction that, for fixed $a \neq 1$ and n = 1, 2, ...

$$1 + a + a^{2} + \ldots + a^{n-1} = \frac{a^{n} - 1}{a - 1}.$$

 (2^{\dagger}) Define a_n (n = 0, 1, 2, ...) by $a_0 = 1$ and $a_{n+1} = a_n + 2^n + 1$. Show by induction that

$$a_n = 2^n + n$$
 $(n = 0, 1, 2, ...).$

(3^{**}) A certain algorithm takes time T(n) to sort a set of 2^n elements, and time $T(n+1) = T(n) \times n^2$ to sort a set of 2^{n+1} elements. Show by induction that

$$T(n) = ((n-1)!)^2 T(1)$$
 $(n = 1, 2, ...).$

- (4*) Prove by induction that $3^n 2n^2 1$ is divisible by 8, for n = 1, 2, ...
- (5^{*}) The Fibonacci numbers f_n are defined by $f_1 = f_2 = 1$ and $f_{n+1} = f_n + f_{n-1}$ for $n \ge 2$. Prove by strong induction that

$$\phi^{n-2} \le f_n \le \phi^n \qquad (n = 1, 2, \ldots)$$

where $\phi = \frac{1}{2}(1 + \sqrt{5})$, the so-called *Golden Ratio*. [Use the fact that $1 + \phi = \phi^2$.] (6*) Let $\lfloor x \rfloor$ be the *floor* of x, i.e. the largest integer $\leq x$. Prove by induction that

$$n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor \qquad (n = 1, 2, \ldots).$$

(7[†]) What is wrong with the following inductive argument: "**Theorem**. Let x > 0 be fixed. Then $x^{n-1} = 1$ for n = 1, 2, ...

Proof. If n = 1 then $x^{1-1} = x^0 = 1$, so result true for n = 1. Assuming the result true for $1, 2, \ldots$, we have

 $x^{(n+1)-1} = x^n = x^{n-1} \times x^{n-1} / x^{n-2} = 1 \times 1/1 = 1,$

so that the result holds for n + 1 as well." (Knuth)

(8) Show that if, for some proposition P(n),

(a) P(1) is true

(b) P(n) true $\implies P(2n)$ and P(2n+1) both true (n = 1, 2, ...)

then P(n) is true for $n = 1, 2, \ldots$

[Use induction on the length of the binary representation of n].

- (9) (Esoteric variant of induction.) Show that if, for some statement $P_2(n)$,
 - (a) $P_2(1)$ is true (b) $P_2(n)$ true $\implies P_2(2n)$ true (n = 1, 2, ...)(c) $P_2(n+1)$ true $\implies P_2(n)$ true (!) (n = 1, 2, ...)then $P_2(n)$ is true for n = 1, 2, ...

Convergence of sequences and series

(10[†]) Define a sequence $(t_n)_{n \in \mathbb{N}}$ by $t_n = \frac{2n+1}{n^3}$. Prove that this sequence tends to 0 as $n \to \infty$.

- (11*) Define a sequence $(a_n)_{n \in \mathbb{N}}$ by $a_n = \frac{2n^2 1}{n^3 2}$. Prove that this sequence tends to 0 as $n \to \infty$.
- (12**) Prove that the sequence $(t_n)_{n \in \mathbb{N}}$ defined by $t_n = \frac{2n + \sin n}{3n}$ tends to a limit as $n \to \infty$.
- (13) Suppose that the sequence $(a_n)_{n \in \mathbb{N}}$ tends to the limit A, while the sequence $(b_n)_{n \in \mathbb{N}}$ tends to B. Prove that the sequence $(a_n + b_n)_{n \in \mathbb{N}}$ tends to A + B.
- (14) Suppose that the sequence $(a_n)_{n \in \mathbb{N}}$ tends to the limit A, while the sequence $(b_n)_{n \in \mathbb{N}}$ tends to B. Prove that the sequence $(a_n \cdot b_n)_{n \in \mathbb{N}}$ tends to AB.
- (15) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ tends to a limit A, and the sequence $(b_n)_{n\in\mathbb{N}}$ tends to a limit B. Does the sequence $a_1, b_1, a_2, b_2, \ldots, a_n, b_n, \ldots$ tend to a limit?
- (16) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges.
- (17) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n+100000}$ diverges.
- (18) (Harder) You know (e.g. from the Group Theory course) that the rationals are countable. This means that there is a sequence $(t_n)_{n \in \mathbb{N}}$ that contains each rational number exactly once. (In fact there are many such sequences, obtained by re-ordering $(t_n)_{n \in \mathbb{N}}$ in any way you want to.)
 - Prove that $(t_n)_{n \in \mathbb{N}}$ does not tend to a limit.
 - On the other hand, prove that for every real number q there is a subsequence of $(t_n)_{n \in \mathbb{N}}$ that tends to q.
- (19) Evaluate the recurring decimal 0.142857142857... exactly as a rational.