The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 4

Assessment 4 due by 12.10 on Friday, 26 February 2010. Tutorial 4 on Tuesday, 23 February 2010.

Tutorial questions: 1, 3, and 5.

Handin questions: 2, and 4.

Conics

 (1^*) Put the following conics into standard form.

- (i) $\mathcal{X}_0: 7y^2 + 2xy + 7x^2 = 1.$
- (ii) $\mathcal{X}_1: 7y^2 + 2xy y + 7x^2 + 11x = 1.$
- (iii) What is the length of the semi-minor (resp. semi-majour) axis of \mathcal{X}_0 ?
- (iv) What is the centre of \mathcal{X}_1 ?
- (2^{\dagger}) Put the following conics into standard form.

(i)
$$\mathcal{X}_0: 86y^2 - 96xy + 114x^2 = 1.$$

(ii) $\mathcal{X}_1: 86y^2 - 96xy + 45y + 114x^2 + 65x = 1.$

(3^{*}) Put the following centred conics into standard form simultaneously.

$$\mathcal{X}_0: 95y^2 + 216xy + 130x^2 = 1,$$

$$\mathcal{X}_1: 222y^2 + 480xy + 278x^2 = 1$$

Do these conics intersect?

 (4^{\dagger}) Put the following centred conics into standard form simultaneously.

$$\mathcal{X}_0: 30y^2 + 32xy + 9x^2 = 1,$$

 $\mathcal{X}_1: 12y^2 + 20xy + 9x^2 = 1.$

Do these conics intersect?

Induction

- (5^{*}) Prove by induction that $n^2 n + 2$ is always even for n = 1, 2, ...
- (6) Prove by induction that, for n = 1, 2, ...

$$1^{3} + 2^{3} + \ldots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}.$$

- (7) Prove by induction that $3^n > 5n^2$ for $n \ge 4$.
- (8) Prove that $\cos(n\pi) = (-1)^n (n = 0, \pm 1, \pm 2, ...)$, by induction.
- (9) In a computer memory, an arbitrary length vector v_n stores sequentially all the previous vectors $v_1, v_2, \ldots, v_{n-1}$, so the length ℓ_n of v_n satisfies

$$\ell_n = \ell_1 + \ldots + \ell_{n-1}$$
 $(n = 2, 3, \ldots)$

Given that $\ell_1 = 1$, prove by induction that $\ell_n = 2^{n-2}$ for $n = 2, 3, \ldots$

What about n = 1?