The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 2

Assessment 2 due by 12.10 on Friday, 29 January 2010. Tutorial 2 on Tuesday, 26 January 2010.

Pretutorial questions: 2, and 4.

Tutorial questions: 7, 8, and 16.

Handin question: 3.

- (1) (a) For the line 7x 3y = 1, write down a normal to the line, and a point on the line. Find the distance of the point (3, 4) from the line.
 - (b) More generally, for the line ax + by = c, write down a normal, and show that the point $(ac/(a^2 + b^2), bc/(a^2 + b^2))$ lies on the line. Deduce that the distance of the point (x_0, y_0) from the line is $|ax_0 + by_0 c|/\sqrt{a^2 + b^2})$.
- (2^{**}) (a) Which points in the plane \mathbb{R}^2 are equidistant from the *x* and *y*-axes?
 - (b) Find the point that is equidistant from the x-axis, the y-axis and the line 3x + 4y = 36.
 - (c) What is the largest radius of a circle that will fit inside the triangle specified by the three lines in (b)? (This circle is called the *incircle* of the triangle, and its centre is the *incentre* of the triangle).
- (3[†]) (a) Given a line in \mathbb{R}^3 in parametric form $\mathbf{a} + t\mathbf{v}$, and a point \mathbf{b} in \mathbb{R}^3 , sketch the plane containing \mathbf{b} and the line.
 - (b) Deduce that the distance of **b** from the line is $|\mathbf{a} \mathbf{b} \lambda \mathbf{v}|$, where $\lambda \mathbf{v}$ is the component of $\mathbf{a} - \mathbf{b}$ in the direction \mathbf{v} .
 - (c) How far is the point (1, 2, 3) from the line (1, 0, -1)+t(-1, 3, 2)?

- (d) This method works for a point and a line in \mathbb{R}^n for any n. In \mathbb{R}^4 , how far is the point (1, -1, 1, 0) from the line (0, 1, 1, 0) + t(1, 1, 0, -1)?
- (4^{**}) If $\mathbf{a} \neq 0$ and $\mathbf{a} \times \mathbf{b} = 0$, prove that \mathbf{b} is a scalar multiple of \mathbf{a} .
 - (5) Verify by expanding both sides that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$.
 - (6) Show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$.
- (7^{*}) Solving the equation $\mathbf{a} \times \mathbf{x} = \mathbf{b}$, for given vectors \mathbf{a}, \mathbf{b} in \mathbb{R}^3 .
 - (a) Show that if $\mathbf{a} \times \mathbf{x} = \mathbf{b}$ then $\mathbf{a} \cdot \mathbf{b} = 0$. We assume that this condition holds for the rest of the question.
 - (b) Use Q4 above to show that $-(\mathbf{a} \times \mathbf{b})/|\mathbf{a}|^2$ is a solution of $\mathbf{a} \times \mathbf{x} = \mathbf{b}$.
 - (c) If $\mathbf{x} = \mathbf{u} (\mathbf{a} \times \mathbf{b})/|\mathbf{a}|^2$ is another solution, show that $\mathbf{u} \times \mathbf{a} = 0$. Hence use Q3 above to write down the general solution \mathbf{x} to $\mathbf{a} \times \mathbf{x} = \mathbf{b}$.

[In this question we've seen that the solution set $\{\mathbf{x} : \mathbf{a} \times \mathbf{x} = \mathbf{b}\}$ is either empty (when $\mathbf{a} \cdot \mathbf{b} \neq 0$) or a line. Note the contrast with the equation $\mathbf{a} \cdot \mathbf{x} = b$, whose solution set is a plane.]

- (8^{*}) (Converse to question 6). Show that a given line $\mathbf{w} + t\mathbf{a}$ in \mathbb{R}^3 is the solution set of the equation $\mathbf{a} \times \mathbf{x} = \mathbf{a} \times \mathbf{w}$.
- (9) Consider the points P = (7, 0, -1), Q = (2, 5, 4), R = (2, -4, -2).Find
 - (a) the angle between \overrightarrow{QP} and \overrightarrow{QR} ;
 - (b) the parametric form for the line joining the points P and Q;
 - (c) the equation of the plane containing P, Q and R.
- (10) If **a** and **b** lie in the *xy*-plane show that $|[\mathbf{a}, \mathbf{b}, \mathbf{k}]|$ equals the area of the parallelogram generated by **a** and **b**.

- (11) Let **a**, **b** and **c** be the position vectors of three points P, Q and R. Show that P, Q and R lie on a line (then we say that they are *collinear*) if and only if $(\mathbf{b} \mathbf{a}) \times (\mathbf{c} \mathbf{a}) = \mathbf{0}$.
- (12) Suppose $\mathbf{n} \cdot \mathbf{x} = d$ and $\mathbf{n}' \cdot \mathbf{x} = d'$ are two non-parallel planes.
 - (a) Show that $[\mathbf{n}, \mathbf{n}', \mathbf{n} \times \mathbf{n}'] \neq 0$.
 - (b) Let A be the matrix with rows given by \mathbf{n} , \mathbf{n}' and $\mathbf{n} \times \mathbf{n}'$ respectively. Explain why A is invertible.
 - (c) Consider the vector $\mathbf{b} = (d, d', 0)$ and let $\mathbf{a} = A^{-1}\mathbf{b}$. Show that $\mathbf{a} + t\mathbf{n} \times \mathbf{n}'$ gives the intersection line of the two planes.
 - (d) Can we choose other vectors for **b**? Explain.
- (13) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be two linear maps. Show that the function h defined by $h(\mathbf{a}) = f(\mathbf{a}) + g(\mathbf{a})$ is also linear. *[hint: Consider* $h(\lambda \mathbf{a} + \mu \mathbf{b})$.]
- (14) For the following maps (a) identify a suitable domain and range, and (b) state with reasons if the map is linear or not (**b** and **c** are fixed non-zero vectors and λ is a scalar):
 - (a) $f(\mathbf{x}) = \mathbf{0}$ (b) $f(\mathbf{x}) = \mathbf{x} + \mathbf{b}$ (c) $f(\mathbf{x}) = \lambda \mathbf{x}$ (d) $f(\mathbf{x}) = (\mathbf{b} \cdot \mathbf{x})\mathbf{c} - (\mathbf{b} \cdot \mathbf{c})\mathbf{x}$ (e) $f(\mathbf{x}) = (\mathbf{b} \cdot \mathbf{x})\mathbf{c} + (\mathbf{b} \cdot \mathbf{x})\mathbf{x}$ (f) $f(\mathbf{x}) = [\mathbf{x}, \mathbf{b}, \mathbf{c}]$ (g) $f(\mathbf{x}) = |\mathbf{x}|$
- (15) For those functions in the previous question which are linear maps find their corresponding matrices and decide whether they are invertible or not.

- (16*) For the plane given parametrically by (t, u) = (3, 0, 0) + t(-3, 4, 0) + u(-3, 0, 6) write down three points on the plane that don't lie on one line. Use these to find a normal to the plane. Find the distance of the point (1, 2, 3) from the plane.
- (17) Show directly that for the projection matrix $P_{\theta} = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$
 - (a) $P_{\theta}^2 = P_{\theta}$ and
 - (b) $(P_{\theta}P_{\phi})^2 = \lambda P_{\theta}P_{\phi}$, where $|\lambda| \le 1$ is some real number depending on θ and ϕ .

Explain these facts geometrically.

- (18) Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map which is not the identity and satisfies $f \circ f = f$. Let $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be the 2×2 matrix corresponding to f. Show that
 - (a) det P = 0,
 - (b) the eigenvalues of P are either 0 or 1,
 - (c) $0 \le a \le 1$ and $0 \le d \le 1$.
 - (d) Either

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ or } P = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ or } P = \begin{bmatrix} \cos^2 \theta & \alpha \\ \frac{\cos^2 \theta \sin^2 \theta}{\alpha} & \sin^2 \theta \end{bmatrix}$$

for some angle $0 \le \theta \le \pi/2$ and non-zero real number α .

(e) Find the eigenvectors of P and show that the eigenvectors are orthogonal to each other if and only if P is the projection to a line through the origin.