The University of Edinburgh 2010

School of Mathematics
Geometry \& Convergence

Problem Sheet 2

Assessment 2 due by 12.10 on Friday, 29 January 2010.
 Tutorial 2 on Tuesday, 26 January 2010.

Pretutorial questions: 2, and 4.
Tutorial questions: 7, 8, and 16.
Handin question: 3.
(1) (a) For the line $7 x-3 y=1$, write down a normal to the line, and a point on the line. Find the distance of the point $(3,4)$ from the line.
(b) More generally, for the line $a x+b y=c$, write down a normal, and show that the point $\left(a c /\left(a^{2}+b^{2}\right), b c /\left(a^{2}+b^{2}\right)\right)$ lies on the line. Deduce that the distance of the point $\left(x_{0}, y_{0}\right)$ from the line is $\left.\left|a x_{0}+b y_{0}-c\right| / \sqrt{a^{2}+b^{2}}\right)$.
$\left(2^{* *}\right)$ (a) Which points in the plane \mathbb{R}^{2} are equidistant from the x - and y-axes?
(b) Find the point that is equidistant from the x-axis, the y-axis and the line $3 x+4 y=36$.
(c) What is the largest radius of a circle that will fit inside the triangle specified by the three lines in (b)? (This circle is called the incircle of the triangle, and its centre is the incentre of the triangle).
$\left(3^{\dagger}\right)$ (a) Given a line in \mathbb{R}^{3} in parametric form $\mathbf{a}+t \mathbf{v}$, and a point \mathbf{b} in \mathbb{R}^{3}, sketch the plane containing \mathbf{b} and the line.
(b) Deduce that the distance of \mathbf{b} from the line is $|\mathbf{a}-\mathbf{b}-\lambda \mathbf{v}|$, where $\lambda \mathbf{v}$ is the component of $\mathbf{a}-\mathbf{b}$ in the direction \mathbf{v}.
(c) How far is the point $(1,2,3)$ from the line $(1,0,-1)+t(-1,3,2)$?
(d) This method works for a point and a line in \mathbb{R}^{n} for any n. In \mathbb{R}^{4}, how far is the point $(1,-1,1,0)$ from the line $(0,1,1,0)+$ $t(1,1,0,-1)$?
$\left(4^{* *}\right)$ If $\mathbf{a} \neq 0$ and $\mathbf{a} \times \mathbf{b}=0$, prove that \mathbf{b} is a scalar multiple of \mathbf{a}.
(5) Verify by expanding both sides that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.
(6) Show that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=\mathbf{0}$.
$\left(7^{*}\right)$ Solving the equation $\mathbf{a} \times \mathbf{x}=\mathbf{b}$, for given vectors \mathbf{a}, \mathbf{b} in \mathbb{R}^{3}.
(a) Show that if $\mathbf{a} \times \mathbf{x}=\mathbf{b}$ then $\mathbf{a} \cdot \mathbf{b}=0$. We assume that this condition holds for the rest of the question.
(b) Use Q4 above to show that $-(\mathbf{a} \times \mathbf{b}) /|\mathbf{a}|^{2}$ is a solution of $\mathbf{a} \times \mathbf{x}=$ b.
(c) If $\mathbf{x}=\mathbf{u}-(\mathbf{a} \times \mathbf{b}) /|\mathbf{a}|^{2}$ is another solution, show that $\mathbf{u} \times \mathbf{a}=0$. Hence use Q3 above to write down the general solution \mathbf{x} to $\mathbf{a} \times \mathbf{x}=\mathbf{b}$.
[In this question we've seen that the solution set $\{\mathbf{x}: \mathbf{a} \times \mathbf{x}=\mathbf{b}\}$ is either empty (when $\mathbf{a} \cdot \mathbf{b} \neq 0$) or a line. Note the contrast with the equation $\mathbf{a} \cdot \mathbf{x}=b$, whose solution set is a plane.]
$\left(8^{*}\right)$ (Converse to question 6). Show that a given line $\mathbf{w}+t \mathbf{a}$ in \mathbb{R}^{3} is the solution set of the equation $\mathbf{a} \times \mathbf{x}=\mathbf{a} \times \mathbf{w}$.
(9) Consider the points $P=(7,0,-1), Q=(2,5,4), R=(2,-4,-2)$. Find
(a) the angle between $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$;
(b) the parametric form for the line joining the points P and Q;
(c) the equation of the plane containing P, Q and R.
(10) If \mathbf{a} and \mathbf{b} lie in the $x y$-plane show that $|[\mathbf{a}, \mathbf{b}, \mathbf{k}]|$ equals the area of the parallelogram generated by \mathbf{a} and \mathbf{b}.
11) Let \mathbf{a}, \mathbf{b} and \mathbf{c} be the position vectors of three points P, Q and R. Show that P, Q and R lie on a line (then we say that they are collinear $)$ if and only if $(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})=\mathbf{0}$.
(12) Suppose $\mathbf{n} \cdot \mathbf{x}=d$ and $\mathbf{n}^{\prime} \cdot \mathbf{x}=d^{\prime}$ are two non-parallel planes.
(a) Show that $\left[\mathbf{n}, \mathbf{n}^{\prime}, \mathbf{n} \times \mathbf{n}^{\prime}\right] \neq 0$.
(b) Let A be the matrix with rows given by $\mathbf{n}, \mathbf{n}^{\prime}$ and $\mathbf{n} \times \mathbf{n}^{\prime}$ respectively. Explain why A is invertible.
(c) Consider the vector $\mathbf{b}=\left(d, d^{\prime}, 0\right)$ and let $\mathbf{a}=A^{-1} \mathbf{b}$. Show that $\mathbf{a}+t \mathbf{n} \times \mathbf{n}^{\prime}$ gives the intersection line of the two planes.
(d) Can we choose other vectors for \mathbf{b} ? Explain.
(13) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two linear maps. Show that the function h defined by $h(\mathbf{a})=f(\mathbf{a})+g(\mathbf{a})$ is also linear. [hint: Consider $h(\lambda \mathbf{a}+\mu \mathbf{b})$.]
(14) For the following maps (a) identify a suitable domain and range, and (b) state with reasons if the map is linear or not (b and care fixed non-zero vectors and λ is a scalar):
(a) $f(\mathbf{x})=\mathbf{0}$
(b) $f(\mathrm{x})=\mathbf{x}+\mathbf{b}$
(c) $f(\mathrm{x})=\lambda \mathrm{x}$
(d) $f(\mathbf{x})=(\mathbf{b} \cdot \mathbf{x}) \mathbf{c}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{x}$
(e) $f(\mathbf{x})=(\mathbf{b} \cdot \mathbf{x}) \mathbf{c}+(\mathbf{b} \cdot \mathbf{x}) \mathbf{x}$
(f) $f(\mathbf{x})=[\mathbf{x}, \mathbf{b}, \mathbf{c}]$
(g) $f(\mathrm{x})=|\mathrm{x}|$
(15) For those functions in the previous question which are linear maps find their corresponding matrices and decide whether they are invertible or not.
$\left(16^{*}\right)$ For the plane given parametrically by $(t, u)=(3,0,0)+t(-3,4,0)+$ $u(-3,0,6)$ write down three points on the plane that don't lie on one line. Use these to find a normal to the plane. Find the distance of the point $(1,2,3)$ from the plane.
(17) Show directly that for the projection matrix $P_{\theta}=$ $\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$
(a) $P_{\theta}^{2}=P_{\theta}$ and
(b) $\left(P_{\theta} P_{\phi}\right)^{2}=\lambda P_{\theta} P_{\phi}$, where $|\lambda| \leq 1$ is some real number depending on θ and ϕ.

Explain these facts geometrically.
(18) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map which is not the identity and satisfies $f \circ f=f$. Let $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be the 2×2 matrix corresponding to f. Show that
(a) $\operatorname{det} P=0$,
(b) the eigenvalues of P are either 0 or 1 ,
(c) $0 \leq a \leq 1$ and $0 \leq d \leq 1$.
(d) Either

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { or } P=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \text { or } P=\left[\begin{array}{cc}
\cos ^{2} \theta & \alpha \\
\frac{\cos ^{2} \theta \sin ^{2} \theta}{\alpha} & \sin ^{2} \theta
\end{array}\right]
$$

for some angle $0 \leq \theta \leq \pi / 2$ and non-zero real number α.
(e) Find the eigenvectors of P and show that the eigenvectors are orthogonal to each other if and only if P is the projection to a line through the origin.

