The University of Edinburgh 2010

School of Mathematics

Geometry \& Convergence

Problem Sheet 1

Assessment 1 due by 12.10 on Friday, 15 January 2010.

Tutorial questions: 4, 6, and 14 .
Handin questions: 1, and 3.
$\left(1^{\dagger}\right)$ Sine and cosine rules. Consider the standard triangle with angles A, B, C opposite sides a, b, c. Drop a perpendicular from the angle A onto the side a. (Draw this.)
(a) Show that $b \sin C=c \sin B$. Deduce the sine rule $a / \sin A=$ $b / \sin B=c / \sin C$.
(b) Show that the right-angled triangle with hypotenuse c has other sides $b \sin C$ and $a-b \cos C$. Deduce the cosine rule $c^{2}=a^{2}+$ $b^{2}-2 a b \cos C$.
(2) "Angle at centre is twice that at circumference."
(a) Draw a circle with centre O, and a triangle $A B C$ whose vertices A, B, C lie on the circle. Join A and O, and let the angle $\angle O A B=\beta, \angle O A C=\gamma$. Find $\angle A O B$ in terms of β and $\angle A O C$ in terms of γ.
Deduce that $\angle B O C=2(\beta+\gamma)=2 \angle B A C$.
What happens when $A C$ is a diagonal of the circle?
(b) Let $B C$ be a fixed line segment. A point A moves on the plane so that the angle $\angle B A C$ stays constant. It starts at B and ends at C. Show that A traces out an arc of a circle.
$\left(3^{\dagger}\right)$ Let $\mathbf{a}=\langle-1,-1\rangle, \mathbf{b}=\langle-2,3\rangle$. Calculate, in radians to 2 decimal places, the angles between

- \mathbf{a} and \mathbf{b};
- \mathbf{a} and $\mathbf{a}-\mathbf{b}$;
- \mathbf{b} and $\mathbf{b}-\mathbf{a}$.

What is the sum of these angles? Why?
(4*) Find the component of $\mathbf{c}=\langle 2,1\rangle$ in the direction $\mathbf{v}=\langle 4,1\rangle$. Hence write \mathbf{c} in the form $\mathbf{c}=\lambda \mathbf{v}+\mathbf{w}$, where $\mathbf{v} \cdot \mathbf{w}=0$.

Check also that \mathbf{w} itself is the component of \mathbf{c} in the direction \mathbf{w}.
Draw a picture to illustrate the question.
(5) Let $\mathbf{a}=\langle 1,2\rangle, \mathbf{b}=\langle 2,-3\rangle$. Find the equation of the line given parametrically by $(1-t) \mathbf{a}+t \mathbf{b}$.

Which values of t describe the set of points on the line that are nearer to \mathbf{a} than to \mathbf{b} ?

Does the point $(6,7)$ lie on the line?
Give examples of points on the line that lie

- between \mathbf{a} and \mathbf{b};
- on the side of \mathbf{a} away from \mathbf{b};
- on the side of \mathbf{b} away from \mathbf{a}.

Find the two points on the line that are each twice as far from a as from \mathbf{b}.
$\left(6^{*}\right)$ Let $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle, \mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ be two independent vectors in \mathbb{R}^{2} (i.e. neither is a multiple of the other), and put $\mathbf{u}^{\perp}=\left\langle-u_{2}, u_{1}\right\rangle, \mathbf{v}^{\perp}=$ $\left\langle-v_{2}, v_{1}\right\rangle$.
Show that $\mathbf{u}^{\perp} \cdot \mathbf{u}=\mathbf{v}^{\perp} \cdot \mathbf{v}=0$.
Writing $\mathbf{x} \in \mathbb{R}^{2}$ as a linear combination $\lambda \mathbf{u}+\mu \mathbf{v}$ of \mathbf{u} and \mathbf{v}, show by taking appropriate dot products that

- $\lambda=\left(\mathbf{v}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{v}^{\perp} \cdot \mathbf{u}\right) ;$
- $\mu=\left(\mathbf{u}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{u}^{\perp} \cdot \mathbf{v}\right)$.

Now try this procedure with the example $\mathbf{u}=\langle 2,3\rangle, \mathbf{v}=\langle 2,-1\rangle$ and $\mathbf{x}=\langle 1,1\rangle$. Check that indeed $\mathbf{x}=\left(\mathbf{v}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{v}^{\perp} \cdot \mathbf{u}\right) \mathbf{u}+\left(\mathbf{u}^{\perp} \cdot \mathbf{x}\right) /\left(\mathbf{u}^{\perp}\right.$. $\mathbf{v}) \mathbf{v}$ for this example.
($6 \frac{1}{2}$) In Q6, explain why $\mathbf{v}^{\perp} \cdot \mathbf{u}$ (and, similarly, $\mathbf{u}^{\perp} \cdot \mathbf{v}$) is nonzero.
(7) Consider three simultaneous equations

$$
\begin{aligned}
a x+b y+c z & =d, \\
k x+l y+m z & =n, \\
p x+q y+r z & =s
\end{aligned}
$$

for x, y and z. Each equation describes a plane. Assume that each equation describes a different plane.
Give a sketch of a possible arrangement of the three planes in each of the following cases:
(a) There is a unique solution of all three equations together;
(b) Each pair of equations has a solution, but there is no solution of all three together;
(c) No pair of equations has a solution;
(d) There are infinitely many solutions of all equations together;
(e) The fifth case!
(8) Consider the plane Π which contains the three points $(1,0,-2)$, $(2,-1,3)$ and $(0,1,1)$. Find the parametric form for Π and the equation for Π. [hint: Pick one of the points as a base point and find two vectors in the plane relative to this base point.]
(9) Consider the points $P=(1,2,3), Q=(-1,1,3)$ the lines $\ell_{1}=$ $(2+t, 1+2 t,-t), \ell_{2}=(1-3 t, 2+2 t, 1+t)$ and the planes Π_{1} given by $2 x-y-z=2, \Pi_{2}$ given by $z-x=3$. Find
(a) the distance between P and Q,
(b) the distance between ℓ_{1} and ℓ_{2}, [hint: Use the formula from lectures.]
(c) the distance between Π_{1} and Π_{2},
(10) Consider the line given by $\mathbf{a}+t \mathbf{d}$ and a point P with position vector c. Let $f(t)=|\mathbf{a}+t \mathbf{d}-\mathbf{c}|^{2}$ be the given function of t. What is the geometrical interpretation of f ?
Find the stationary point of f and deduce that the closest point on the line to P is given by $\mathbf{a}+t \mathbf{d}$ for this stationary value of t.
Show that for this value of $t, \mathbf{a}+t \mathbf{d}-\mathbf{c}$ is perpendicular to \mathbf{d}.
(11) Suppose \mathbf{a} and \mathbf{b} are two vectors in the $x y$-plane. Find the two real numbers λ and μ satisfying the equation $\mathbf{a}+\lambda \mathbf{a} \times \mathbf{k}=\mathbf{b}+\mu \mathbf{b} \times \mathbf{k}$. [hint: Apply $\times \mathbf{v}$, with an appropriate vector \mathbf{v}, to both sides to eliminate the term with μ.]
(12) Simplify $(\mathbf{u}+\mathbf{v}) \times(\mathbf{u}-\mathbf{v})$.
(13) Suppose that the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^{3}$ in fact lie in a plane. Prove that

$$
(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=0
$$

(14*) Consider the points $A=(1,1,1), B=(1,-1,-1), C=(-1,1,-1)$, $D=(-1,-1,1)$ in \mathbb{R}^{3}.
(a) Show that they are all equidistant from the origin $O=(0,0,0)$. What is this distance?
(b) Show that they are equidistant from each other, and so form the vertices of a regular tetrahedron. What is this distance?
(c) Find the angle $\angle A O B$.
(This is the so-called tetrahedral angle, and is e.g. the angle
subtended at the carbon atom by two hydrogen atoms in a methane molecule CH_{4}.)

