The University of Edinburgh 2010

School of Mathematics (U01457)

Geometry & Convergence Problem Sheet 1

Assessment 1 due by 12.10 on Friday, 15 January 2010.

Tutorial questions: 4, 6, and 14.

Handin questions: 1, and 3.

- (1[†]) Sine and cosine rules. Consider the standard triangle with angles A, B, C opposite sides a, b, c. Drop a perpendicular from the angle A onto the side a. (Draw this.)
 - (a) Show that $b \sin C = c \sin B$. Deduce the sine rule $a / \sin A = b / \sin B = c / \sin C$.
 - (b) Show that the right-angled triangle with hypotenuse c has other sides $b \sin C$ and $a b \cos C$. Deduce the cosine rule $c^2 = a^2 + b^2 2ab \cos C$.
- (2) "Angle at centre is twice that at circumference."
 - (a) Draw a circle with centre O, and a triangle ABC whose vertices A, B, C lie on the circle. Join A and O, and let the angle $\angle OAB = \beta$, $\angle OAC = \gamma$. Find $\angle AOB$ in terms of β and $\angle AOC$ in terms of γ .

Deduce that $\angle BOC = 2(\beta + \gamma) = 2 \angle BAC$. What happens when AC is a diagonal of the circle?

- (b) Let BC be a fixed line segment. A point A moves on the plane so that the angle $\angle BAC$ stays constant. It starts at B and ends at C. Show that A traces out an arc of a circle.
- (3[†]) Let $\mathbf{a} = \langle -1, -1 \rangle$, $\mathbf{b} = \langle -2, 3 \rangle$. Calculate, in radians to 2 decimal places, the angles between

• **a** and **b**;

- **a** and **a b**;
- **b** and **b a**.

What is the sum of these angles? Why?

(4*) Find the component of $\mathbf{c} = \langle 2, 1 \rangle$ in the direction $\mathbf{v} = \langle 4, 1 \rangle$. Hence write \mathbf{c} in the form $\mathbf{c} = \lambda \mathbf{v} + \mathbf{w}$, where $\mathbf{v} \cdot \mathbf{w} = 0$.

Check also that \mathbf{w} itself is the component of \mathbf{c} in the direction \mathbf{w} .

Draw a picture to illustrate the question.

(5) Let $\mathbf{a} = \langle 1, 2 \rangle$, $\mathbf{b} = \langle 2, -3 \rangle$. Find the equation of the line given parametrically by $(1-t)\mathbf{a} + t\mathbf{b}$.

Which values of t describe the set of points on the line that are nearer to **a** than to **b**?

Does the point (6,7) lie on the line?

Give examples of points on the line that lie

- between **a** and **b**;
- on the side of **a** away from **b**;
- on the side of **b** away from **a**.

Find the two points on the line that are each twice as far from **a** as from **b**.

(6*) Let $\mathbf{u} = \langle u_1, u_2 \rangle$, $\mathbf{v} = \langle v_1, v_2 \rangle$ be two independent vectors in \mathbb{R}^2 (i.e. neither is a multiple of the other), and put $\mathbf{u}^{\perp} = \langle -u_2, u_1 \rangle$, $\mathbf{v}^{\perp} = \langle -v_2, v_1 \rangle$.

Show that $\mathbf{u}^{\perp} \cdot \mathbf{u} = \mathbf{v}^{\perp} \cdot \mathbf{v} = 0.$

Writing $\mathbf{x} \in \mathbb{R}^2$ as a linear combination $\lambda \mathbf{u} + \mu \mathbf{v}$ of \mathbf{u} and \mathbf{v} , show by taking appropriate dot products that

• $\lambda = (\mathbf{v}^{\perp} \cdot \mathbf{x})/(\mathbf{v}^{\perp} \cdot \mathbf{u});$ • $\mu = (\mathbf{u}^{\perp} \cdot \mathbf{x})/(\mathbf{u}^{\perp} \cdot \mathbf{v}).$ Now try this procedure with the example $\mathbf{u} = \langle 2, 3 \rangle$, $\mathbf{v} = \langle 2, -1 \rangle$ and $\mathbf{x} = \langle 1, 1 \rangle$. Check that indeed $\mathbf{x} = (\mathbf{v}^{\perp} \cdot \mathbf{x})/(\mathbf{v}^{\perp} \cdot \mathbf{u})\mathbf{u} + (\mathbf{u}^{\perp} \cdot \mathbf{x})/(\mathbf{u}^{\perp} \cdot \mathbf{v})\mathbf{v}$ for this example.

- $(6\frac{1}{2})$ In Q6, explain why $\mathbf{v}^{\perp} \cdot \mathbf{u}$ (and, similarly, $\mathbf{u}^{\perp} \cdot \mathbf{v}$) is nonzero.
- (7) Consider three simultaneous equations

$$ax + by + cz = d,$$

$$kx + ly + mz = n,$$

$$px + qy + rz = s$$

for x, y and z. Each equation describes a plane. Assume that each equation describes a different plane.

Give a sketch of a possible arrangement of the three planes in each of the following cases:

- (a) There is a unique solution of all three equations together;
- (b) Each pair of equations has a solution, but there is no solution of all three together;
- (c) No pair of equations has a solution;
- (d) There are infinitely many solutions of all equations together;
- (e) The fifth case!
- (8) Consider the plane Π which contains the three points (1,0,-2), (2,-1,3) and (0,1,1). Find the parametric form for Π and the equation for Π. [hint: Pick one of the points as a base point and find two vectors in the plane relative to this base point.]
- (9) Consider the points P = (1, 2, 3), Q = (-1, 1, 3) the lines $\ell_1 = (2+t, 1+2t, -t)$, $\ell_2 = (1-3t, 2+2t, 1+t)$ and the planes Π_1 given by 2x y z = 2, Π_2 given by z x = 3. Find

- (a) the distance between P and Q,
- (d) the distance from P to Π_1 ,

(f) the line $\Pi_1 \cap \Pi_2$,

- (e) the point where ℓ_1 meets Π_1 ,
- (b) the distance between l₁ and l₂, [hint: Use the formula from lectures.]
- (c) the distance between Π_1 and Π_2 ,
- (10) Consider the line given by a+td and a point P with position vector c. Let f(t) = |a + td c|² be the given function of t. What is the geometrical interpretation of f?
 Find the stationary point of f and deduce that the closest point on the line to P is given by a + td for this stationary value of t.

Show that for this value of t, $\mathbf{a} + t\mathbf{d} - \mathbf{c}$ is perpendicular to \mathbf{d} .

- (11) Suppose **a** and **b** are two vectors in the *xy*-plane. Find the two real numbers λ and μ satisfying the equation $\mathbf{a} + \lambda \mathbf{a} \times \mathbf{k} = \mathbf{b} + \mu \mathbf{b} \times \mathbf{k}$. [hint: Apply $\times \mathbf{v}$, with an appropriate vector \mathbf{v} , to both sides to eliminate the term with μ .]
- (12) Simplify $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} \mathbf{v})$.
- (13) Suppose that the vectors $\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\in\mathbb{R}^3$ in fact lie in a plane. Prove that

 $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0.$

- (14*) Consider the points A = (1, 1, 1), B = (1, -1, -1), C = (-1, 1, -1), D = (-1, -1, 1) in \mathbb{R}^3 .
 - (a) Show that they are all equidistant from the origin O = (0, 0, 0). What is this distance?
 - (b) Show that they are equidistant from each other, and so form the vertices of a regular tetrahedron. What is this distance?
 - (c) Find the angle $\angle AOB$.

(This is the so-called *tetrahedral angle*, and is e.g. the angle

Page 3/3

subtended at the carbon atom by two hydrogen atoms in a methane molecule CH_4 .)