(Q1) Consider the set Σ of sequences of two symbols 0,1 , i.e., $\Sigma=\{0,1\}^{\mathbb{N}}$, with a distance between sequences $\mathbf{s}=\left(s_{0}, s_{1}, s_{2}, \cdots\right) \in \Sigma$ and $\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \cdots\right) \in \Sigma$ defined by

$$
d(\mathbf{s}, \mathbf{t})=\sum_{i=0}^{\infty} \frac{\left|s_{i}-t_{i}\right|}{2^{i}}
$$

(a) Show that d defines a metric on Σ.
(b) Show that $d(\mathbf{s}, \mathbf{t}) \leq 2$.
(Q2) With the same definitions as in Question 1, let \mathbf{s}, \mathbf{t} and \mathbf{r} be the periodic sequences $\mathbf{s}=(1,1,2,1,1,2,1,1,2, \cdots), \mathbf{t}=(1,2,1,2,1,2,1,2, \cdots), \mathbf{r}=(2,1,2,1,2,1,2,1, \cdots)$.

Calculate $d(\mathbf{s}, \mathbf{t}), d(\mathbf{t}, \mathbf{r})$ and $d(\mathbf{r}, \mathbf{s})$.
(Q3) Let $\Sigma^{\prime} \subset \Sigma=\{0,1\}^{\mathbb{N}}$ be the set of all sequences \mathbf{s} of two symbols 0,1 with $s_{j+1}=0$ if $s_{j}=1$ (i.e., the sequences in Σ^{\prime} do not have two consecutive 1's).
(a) Confirm that the shift map σ preserves Σ^{\prime}.
(b) Show that periodic points are dense in Σ^{\prime}.
(c) Show that there is a dense orbit in Σ^{\prime}.
(d) How many fixed points of σ are there in Σ^{\prime} ? How many period-2 and period-3 orbits?
(Q4) Consider the one-sided shift map σ acting on sequences of N symbols, i.e., acting on $\Sigma=\{1,2, \cdots, N\}^{\mathbb{N}}$.
(a) How many fixed points of σ^{k} are there?
(b) How many period-2 and period-4 orbits of σ are there in Σ ? How many prime period- 2 and -4 orbits are there?
(Q5) Consider a one-dimensional mapping $F\left(x_{n}\right)$ with m prime periodic orbit

$$
\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

Show that the Liapunov exponent of an orbit attracted to this periodic orbit is given by

$$
\lambda=\frac{1}{m} \ln \left|\prod_{i=0}^{m-1} F^{\prime}\left(x_{i}\right)\right| .
$$

Thereby, show that $\lambda<0$.
(Q6) Find the Liapunov exponent of the logistic map $F_{\mu}(x)=\mu x(1-x)$ for $x \in[0,1]$ where:
(a) $1<\mu<3$
(Hint: You may assume that: (a) there exists at most one attracting period orbit for the logistic map; and (b) the basin of attraction for this attracting periodic orbit comprises the entire closed interval $[0,1]$ minus any repelling fixed points).
(b) $3<\mu<1+\sqrt{6}$.
(Hint: use the result of Question 5).
(Q7) Let $f:[0,1] \rightarrow[0,1]$ be defined as follows

$$
f(x)= \begin{cases}4 x & \text { if } 0 \leq x \leq 1 / 4 \\ -\left(x-\frac{1}{4}\right)\left(\frac{7}{8}-x\right) & \text { if } 1 / 4<x<7 / 8 \\ 2(x-7 / 8) & \text { if } 7 / 8 \leq x \leq 1\end{cases}
$$

Let $I_{0}=\left[0, \frac{1}{4}\right]$ and $I_{1}=\left[\frac{7}{8}, 1\right]$. The aim of this exercise is to show that there is an invariant set $\Lambda \subset[0,1]$ and a homeomorphism $h: \Lambda \rightarrow \Sigma^{\prime}$ (see Q3) such that $h \circ f \mid \Lambda=\sigma \circ h$.
(a) Show that $I_{0} \cup I_{1} \subset f\left(I_{0}\right)$ and $I_{0} \subset f\left(I_{1}\right)$.
(b) Show that if $\omega \in \Sigma^{\prime}$, then the set $I_{\omega}=\left\{x \in[0,1]: f^{n}(x) \in I_{\omega_{n}}\right.$ for all $\left.n\right\}$ is non-empty, and contains a single point.
(c) Let $\Lambda=\cap_{n \geq 0} f^{-n}([0,1])$. Show that if $x \in \Lambda$ iff $f^{n}(x) \in[0,1]$ for all $n \geq 0$.
(d) Show that if $x \in \Lambda$, then $x \in I_{0} \cup I_{1}$. Conclude that $f^{n}(x) \in \Lambda$ for all $n \geq 0$. Hence show that the itinerary map $h(x)=\omega$ is well-defined.
(e) Prove that h is continuous, 1-1 and onto.
(f) How many periodic orbits of period 2,3 and 6 does f have?
(Q8) Let $f(x)=4 x(1-x)$ and let $\Sigma=\{0,1\}^{\mathbb{N}}$. Prove that there is a continuous surjection h such that

commutes (σ is the shift map). Describe the set of points where h fails to be injective, i.e. the set of $\omega \in \Sigma$ where $h^{-1}(h(\omega))$ contains more than one point. [Hint: find intervals J_{0}, J_{1} with disjoint interiors such that $f\left(J_{i}\right)=I$ and $I=$ $J_{0} \cup J_{1}$. Try to define an itinerary map...]

At Examples Class 4 on Friday 3rd December the solution to Questions 3 and 7 will be discussed.

