(Q1) Consider the \mathbb{R}^{1} map with fixed point $x^{*}=\alpha$ represented by the Taylor series $x_{n+1}=F\left(x_{n}\right)=\alpha+\beta_{1}(x-\alpha)+\beta_{2}(x-\alpha)^{2}+\beta_{3}(x-\alpha)^{3}+\beta_{4}(x-\alpha)^{4}+\cdots$
where $\beta_{1,2,3,4, \ldots}$ are constants. Let $G(x)=F(x+\alpha)-\alpha$. Show that G has a fixed point at the origin and

$$
D_{s}\{F\}(\alpha)=D_{s}\{G\}(0)
$$

(Q2) Consider the system $x_{n+1}=F_{\mu}\left(x_{n}\right)$, with $F_{\mu}\left(x_{n}\right)=\mu+x_{n}^{2}$ where $x_{n}, \mu \in \mathbb{R}$.
(a) Find the fixed points of the system in terms of μ.
(b) Find the value of x, and the corresponding value of the parameter μ, at which there is a saddle-node bifurcation.
(c) Find the value of x, and the corresponding value of the parameter μ, at which there is a flip bifurcation. Is it super- or subcritical?
(Q3) Let $I=[a, b]$ be a closed interval and $F: I \rightarrow I$ be a continuous function. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).
(Q4) Let $I=[a, b]$ be a closed interval and F be a continuous function such that $F(I) \supset$ I. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).
(Q5) Show that if the mapping $x_{n+1}=F\left(x_{n}\right)$ with $F(x)$ continuous has a period-2 orbit, then it also has a fixed point. (Hint: Intermediate Value Theorem).
(Q6) Let $F: I \rightarrow I$ be a continuous map of $I=[0,1]$. Show that if F has a prime period-3 orbit, then F has a fixed point and a prime period- 2 point. This completes the proof of the simple Sharkovskii theorem.
(Q7) Show that the mapping $x_{n+1}=F\left(x_{n}\right)$
(a) has no prime period- k orbits for $k \geq 2$ if $F^{\prime}(x)>0$;
(b) has a unique fixed point and no prime period- k orbits for $k \geq 3$ if $F^{\prime}(x)<0$. (Hint: consider the ordering of the x_{j} in a periodic orbit $\left(x_{0}, x_{1}, \cdots, x_{k-1}\right)$; for $F^{\prime}(x)<0$, consider the sign of the derivative of $F^{k}(x)$.)
(Q8) Consider the \mathbb{R}^{1} family of mappings

$$
x_{n+1}=G_{\mu}\left(x_{n}\right)=\mu x_{n}\left(1-x_{n}^{4}\right) \quad(\mu>0) .
$$

(a) Find the fixed point of this mapping with $x>0$. For which range of values of μ does it exist?
(b) Find the value of μ for which the fixed point with $x>0$ undergoes a flip bifurcation and discuss its nature.
(c) The mapping undergoes a sequence of period-doubling bifurcations as μ increases. Describe briefly this phenomenon.
(d) Describe the nature of all period-doubling bifurcations of this mapping.
(Q9) Consider the \mathbb{R}^{1} mapping

$$
x_{n+1}=F_{\mu}\left(x_{n}\right) \quad \text { with } \quad F_{\mu}(x)=\mu x-x^{3} \quad \text { and } \mu>0 .
$$

(a) Find the fixed points of the mapping F_{μ}.
(b) Discuss the existence and stability of the fixed points in terms of μ, and thereby show that the mapping undergoes bifurcations for $\mu=1$ and $\mu=2$.
(c) Describe the bifurcation which arises at $\mu=1$. Sketch the fixed points of F_{μ} on a (μ, x) bifurcation diagram for $0<\mu<3$. Indicate stability on your sketch.
(d) Determine whether the flip bifurcations at $\mu=2$ are supercritical or subcritical by computing the Schwarzian derivative of F_{μ}. What are the implications of this result for period doubling?
(e) Consider the perturbed mapping

$$
F_{\mu, \delta}(x)=\mu x-x^{3}+\delta
$$

such that $F_{\mu, 0}(x)=F_{\mu}(x)$. For a fixed, small value of $\delta>0$, sketch on a (μ, x) diagram the position of the fixed points of $F_{\mu, \delta}$
(Hint: To sketch the position of the fixed points $x(\mu)$, it is convenient to consider the graph of the inverse relationship $\mu(x)$ and use reflection about the line $x=\mu$ to deduce the curves $x(\mu)$; there is then no need to solve the cubic equation for the fixed points explicitly)
(f) Show that the mapping $F_{\mu, \delta}$ undergoes a bifurcation for $\mu=1+3(\delta / 2)^{2 / 3}$. What is the nature of this bifurcation?
(Q10) Prove the following theorem:
Theorem.[Saddle-Node Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^{3} in both variables. Assume that there is a μ_{c}, x_{c} such that
(a) $x_{c}=f_{\mu_{c}}\left(x_{c}\right)$;
(b) $a=f_{\mu_{c}}^{\prime \prime}\left(x_{c}\right) \neq 0$
(c) $b=\left.\frac{\partial f_{\mu}}{\partial \mu}\right|_{x}$ $\neq 0 ;$
(d) $f_{\mu_{c}}^{\prime}\left(x_{c}\right)=1$.

Then there exists a C^{2} function $\mu=\mu(x)$ such that
(i) $\mu\left(x_{c}\right)=\mu_{c}$;
(ii) $f_{\mu(x)}(x)=x$ for all x near x_{c}; and
(iii) $\mu(x)=\mu_{c}-\frac{a}{2 b}\left(x-x_{c}\right)^{2}+O\left(\left|x-x_{c}\right|^{3}\right)$.

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu=\mu_{c}$ and f_{μ} has fixed points $x_{ \pm}(\mu)=x_{c} \pm \sqrt{\frac{-2 b\left(\mu-\mu_{c}\right)}{a}}+O\left(\left|\mu-\mu_{c}\right|\right)$. [Hint: use the implicit function theorem.]

Compare the statement of the SNB Theorem and Q2.
(Q11) Prove the following theorem:
Theorem.[Period-Doubling/Flip Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^{4} in both variables. Assume that there is a μ_{c} such that
(a) $0=f_{\mu}(0)$ for all μ near μ_{c};
(b) $f_{\mu_{c}}^{\prime}(0)=-1$;
(c) $a=f_{\mu_{c}}^{\prime \prime \prime}(0) \neq 0$; and
(d) $b=\left.\frac{\partial\left(f_{\mu}^{2}\right)^{\prime}}{\partial \mu}\right|_{x=0, \mu=\mu_{c}} \neq$
(e) $f_{\mu_{c}}^{\prime}\left(x_{c}\right)=1$.

Then there exists a C^{4} function $\mu=\mu(x)$ defined near $x=0$ such that
(i) $\mu(0)=\mu_{c}$;
(ii) $f_{\mu(x)}(x) \neq x, f_{\mu(x)}^{2}(x)=x$ for all $x \neq 0$ near 0 ; and
(iii) $\mu(x)=\mu_{c}-\frac{a}{2 b}\left(x-x_{c}\right)^{2}+O\left(\left|x-x_{c}\right|^{3}\right)$.

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu=\mu_{c}$ and f_{μ} has fixed points $x_{ \pm}(\mu)= \pm \sqrt{\frac{-2 b\left(\mu-\mu_{c}\right)}{a}}+O\left(\left|\mu-\mu_{c}\right|\right)$.
Hint: use the implicit function theorem for the function

$$
H(x, \mu)= \begin{cases}\frac{f_{\mu}^{2}(x)-x}{x} & \text { if } x \neq 0 \\ \left(f_{\mu}^{2}\right)^{\prime}(0) & \text { if } x=0\end{cases}
$$

Compare the statement of the above Theorem, Q9e and our work in class.
At Examples Class 3 on Tuesday 16 November the solution to Questions 8 \& 9 will be discussed.

