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(Q1) Consider the R1 map with fixed point x∗ = α represented by the Taylor series

xn+1 = F (xn) = α + β1 (x− α) + β2 (x− α)2 + β3 (x− α)3 + β4 (x− α)4 + · · ·

where β1,2,3,4,... are constants. Let G(x) = F (x+ α)− α. Show that G has a fixed
point at the origin and

Ds{F}(α) = Ds{G}(0).

(Q2) Consider the system xn+1 = Fµ(xn), with Fµ(xn) = µ+ x2
n where xn, µ ∈ R.

(a) Find the fixed points of the system in terms of µ.

(b) Find the value of x, and the corresponding value of the parameter µ, at which
there is a saddle-node bifurcation.

(c) Find the value of x, and the corresponding value of the parameter µ, at which
there is a flip bifurcation. Is it super- or subcritical?

(Q3) Let I = [a, b] be a closed interval and F : I → I be a continuous function. Show
that F has a fixed point in I. (Hint: Intermediate Value Theorem).

(Q4) Let I = [a, b] be a closed interval and F be a continuous function such that F (I) ⊃
I. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).

(Q5) Show that if the mapping xn+1 = F (xn) with F (x) continuous has a period-2 orbit,
then it also has a fixed point. (Hint: Intermediate Value Theorem).

(Q6) Let F : I → I be a continuous map of I = [0, 1]. Show that if F has a prime
period-3 orbit, then F has a fixed point and a prime period-2 point. This completes
the proof of the simple Sharkovskii theorem.

(Q7) Show that the mapping xn+1 = F (xn)
(a) has no prime period-k orbits for k ≥ 2 if F ′(x) > 0;

(b) has a unique fixed point and no prime period-k orbits for k ≥ 3 if F ′(x) < 0.
(Hint: consider the ordering of the xj in a periodic orbit (x0, x1, · · · , xk−1); for
F ′(x) < 0, consider the sign of the derivative of F k(x).)

(Q8) Consider the R1 family of mappings

xn+1 = Gµ(xn) = µxn

(
1− x4

n

)
(µ > 0).

(a) Find the fixed point of this mapping with x > 0. For which range of values
of µ does it exist?

(b) Find the value of µ for which the fixed point with x > 0 undergoes a flip
bifurcation and discuss its nature.

(c) The mapping undergoes a sequence of period–doubling bifurcations as µ in-
creases. Describe briefly this phenomenon.

(d) Describe the nature of all period–doubling bifurcations of this mapping.

(Q9) Consider the R1 mapping

xn+1 = Fµ(xn) with Fµ(x) = µx− x3 and µ > 0.
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(a) Find the fixed points of the mapping Fµ.

(b) Discuss the existence and stability of the fixed points in terms of µ, and
thereby show that the mapping undergoes bifurcations for µ = 1 and µ = 2.

(c) Describe the bifurcation which arises at µ = 1. Sketch the fixed points of
Fµ on a (µ, x) bifurcation diagram for 0 < µ < 3. Indicate stability on your
sketch.

(d) Determine whether the flip bifurcations at µ = 2 are supercritical or subcriti-
cal by computing the Schwarzian derivative of Fµ. What are the implications
of this result for period doubling?

(e) Consider the perturbed mapping

Fµ,δ(x) = µx− x3 + δ

such that Fµ,0(x) = Fµ(x). For a fixed, small value of δ > 0, sketch on a
(µ, x) diagram the position of the fixed points of Fµ,δ.
(Hint: To sketch the position of the fixed points x(µ), it is convenient to
consider the graph of the inverse relationship µ(x) and use reflection about
the line x = µ to deduce the curves x(µ); there is then no need to solve the
cubic equation for the fixed points explicitly).

(f) Show that the mapping Fµ,δ undergoes a bifurcation for µ = 1 + 3(δ/2)2/3.
What is the nature of this bifurcation?

(Q10) Prove the following theorem:

Theorem.[Saddle-Node Bifurcation Theorem] Let fµ(x) be a function that is C3

in both variables. Assume that there is a µc, xc such that

(a) xc = fµc(xc);

(b) a = f ′′
µc
(xc) 6= 0;

(c) b =
∂fµ
∂µ

∣∣∣∣
x=xc,µ=µc

6= 0;

(d) f ′
µc
(xc) = 1.

Then there exists a C2 function µ = µ(x) such that

(i) µ(xc) = µc;

(ii) fµ(x)(x) = x for all x near xc; and

(iii) µ(x) = µc −
a

2b
(x− xc)

2 +O(|x− xc|3).

Conclude that fµ undergoes a saddle-node bifurcation at µ = µc and fµ has fixed

points x±(µ) = xc±
√

−2b(µ− µc)

a
+O(|µ−µc|). [Hint: use the implicit function

theorem.]
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Compare the statement of the SNB Theorem and Q2.

(Q11) Prove the following theorem:

Theorem.[Period-Doubling/Flip Bifurcation Theorem] Let fµ(x) be a function
that is C4 in both variables. Assume that there is a µc such that

(a) 0 = fµ(0) for all µ near µc;

(b) f ′
µc
(0) = −1;

(c) a = f ′′′
µc
(0) 6= 0; and

(d) b =
∂
(
f 2
µ

)′

∂µ

∣∣∣∣∣
x=0,µ=µc

6= 0;

(e) f ′
µc
(xc) = 1.

Then there exists a C4 function µ = µ(x) defined near x = 0 such that

(i) µ(0) = µc;

(ii) fµ(x)(x) 6= x, f 2
µ(x)(x) = x for all x 6= 0 near 0; and

(iii) µ(x) = µc −
a

2b
(x− xc)

2 +O(|x− xc|3).

Conclude that fµ undergoes a saddle-node bifurcation at µ = µc and fµ has fixed

points x±(µ) = ±
√

−2b(µ− µc)

a
+O(|µ− µc|).

Hint: use the implicit function theorem for the function

H(x, µ) =





f 2
µ(x)− x

x
if x 6= 0,

(f 2
µ)

′(0) if x = 0.

Compare the statement of the above Theorem, Q9e and our work in class.

At Examples Class 3 on Tuesday 16 November the solution to Questions 8
& 9 will be discussed.


