Q1) Consider the logistic map

$$
x_{n+1}=F\left(x_{n}\right)=\mu x_{n}\left(1-x_{n}\right), \quad \text { where } \mu>0 \quad \text { and } \quad x \in[0,1] .
$$

(a) Find the fixed points of this map. For which values of μ do they exist?
(b) Find a period-2 orbit of the map (i.e., find x_{0} and $x_{1} \neq x_{0}$ such that $x_{1}=F\left(x_{0}\right)$ and $F\left(x_{1}\right)=x_{0}$). For which values of μ does it exist?
Q2) Show that the discrete system

$$
x_{n+1}=\frac{1}{4}-\frac{1}{2 a}-a^{2} x_{n}^{2}
$$

is equivalent to the logistic map with $\mu=a$. (Hint: the variable transformation relating the two systems is affine; i.e., $y_{n}=\alpha x_{n}+\beta$.)
Q3) Show that the map

$$
\theta_{n+1} \equiv 2 \theta_{n} \quad \bmod 1
$$

can be transformed into the logistic map with $\mu=4$ and $0 \leq x_{n} \leq 1$ by the change of variable $x_{n}=\sin ^{2}\left(\pi \theta_{n}\right)$. Find x_{0} such that $x_{8}=x_{0}$ but $x_{1}, \ldots, x_{7} \neq x_{0}$.
(Q4) Find the Poincaré map of the autonomous system

$$
\ddot{x}+2 \dot{x}+5 x=0
$$

for $\Sigma=\{(x, y)=(x, 0), x>0\}$.
(Q5) Find the Poincaré map of the periodically forced system $\ddot{x}+x=\cos 2 t$.
(Q6) If $\left\{x_{n}\right\}$ satisfies the recurrence relation

$$
x_{n+1}=\lambda x_{n} e^{-x_{n}}
$$

where $0<\lambda<1$ and $x_{0}>0$, show that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Find the fixed point different from 0 which exists for $\lambda>1$.
(Q7) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Compute $e^{t A}$. What does this imply for the orbits of the linear system $\dot{\mathrm{x}}=A \mathrm{x}$?
(Q8) Consider the one-dimensional map $x_{n+1}=F\left(x_{n}\right)$, where $F(x)=x-h x^{3}$.
(a) Compute F^{2}, the second iterate of the map.
(b) Deduce that $x=\sqrt{2 / h}$ belongs to a period-2 orbit.
(c) What is the other point of this periodic orbit?
(Q9) Consider the system $x_{n+1}=-\frac{2}{3} x_{n}+y_{n}, \quad y_{n+1}=\frac{1}{3}\left(-4 x_{n}+5 y_{n}\right)$, with $x_{0}=\alpha, y_{0}=\beta$. Show that $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$ as $n \rightarrow \infty$, for any choice of α and β. Show also that the convergence is faster if $\alpha=\beta$ than if $\alpha \neq \beta$.
(Q10) For a positive real number x let $[x]$ be the floor of x-the largest integer that is less than or equal to x - and let $\{x\}=x-[x]$ be the fractional part of x. The Gauss map is defined as $g(x)=\left\{\frac{1}{x}\right\}$ if $x \neq 0$ and $g(0)=0$. Define a discrete DS

$$
x_{n+1}=g\left(x_{n}\right)
$$

(a) Show that the range of g is $[0,1)$.
(b) Show that g has a fixed point at $x=0$.
(c) Show that for each positive integer k there is a fixed point x_{k}^{*} of g such that $x_{k}^{*}=\frac{1}{k}-\frac{1}{k^{3}}+\cdots$ for $k \geq 2$. [Hint: to see the plausibility, draw the graphs of $y=g(x)$ and $y=x$.]
(d) Let $a_{i}, i=1, \ldots$ be non-negative integers which satisfy the property that $a_{i}=0$ implies $a_{j}=0$ for all $j \geq i$. Let $\alpha=\left[a_{1}, \ldots\right]$ denote the continued fraction

$$
\begin{equation*}
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}} \tag{1}
\end{equation*}
$$

It is a fact that every irrational real number $\alpha \in[0,1)$ has a unique continued fraction expansion of this form. Assuming this fact, prove that if $x_{1}=\alpha$ and $\forall n \geq 1$

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right) \tag{2}
\end{equation*}
$$

then $\forall n \geq 1$

$$
\begin{equation*}
a_{n}=\left[1 / x_{n}\right] . \tag{3}
\end{equation*}
$$

(e) Conversely, argue that if we take (2-3) to be the definition of the a_{i}, then $\alpha=x_{1}$ is equal to the right-hand side of (1). In other words, from the Gauss map, we can derive the continued fraction expansion of α.
(f) Assume that $\alpha=p / q$ is a rational number in $[0,1]$ and write $x_{n}=p_{n} / q_{n}$ where p_{n}, q_{n} are coprime (by convention $0=0 / 1$). Show that while $x_{n} \neq 0$ the denominator q_{n} is monotonically decreasing: $q_{n+1}<q_{n}$. Show that there is some N such that $x_{n}=0$ for $n \geq N$.
(g) Say that a continued fraction $\left[a_{1}, \ldots\right]$ has a tail of zeros if there is an N s.t. $a_{n}=0$ for $n \geq N$. Prove that α is rational iff its continued fraction $\left[a_{1}, \ldots\right]$ has a tail of zeros iff α is eventually fixed by g.
(h) Let $\alpha \in[0,1)$ be a prime-period-2 periodic point of the Gauss map. Show that α is the root of a quadratic polynomial with rational coefficients. What are the coefficients in terms of the continued fraction expansion of α ?
(i) Say that a point $x=x_{1}$ is eventually periodic if there is some n such that x_{n} is a periodic point. For example, you showed above that all rationals are eventually periodic. Fact (Lagrange): every eventually periodic irrational number is the root of a quadratic polynomial with rational coefficients.
(h) [Maple] Compute the continued fraction expansion of $\alpha=e-2$. The answer was known to Euler, whose 300th birthday was April 15, 2007.

At Examples Class 1 on Tuesday 5 October the solutions to Questions 1 and 6 will be discussed.

