(Q1) Consider the set Σ of sequences of two symbols 0, 1, i.e., $\Sigma = \{0, 1\}^{\mathbb{N}}$, with a distance between sequences $\mathbf{s} = (s_0, s_1, s_2, \cdots) \in \Sigma$ and $\mathbf{t} = (t_0, t_1, t_2, \cdots) \in \Sigma$ defined by

$$d(\mathbf{s}, \mathbf{t}) = \sum_{i=0}^{\infty} \frac{|s_i - t_i|}{2^i}.$$

- (a) Show that d defines a metric on Σ .
- (b) Show that $d(\mathbf{s}, \mathbf{t}) \leq 2$.

Solution.

(a) Let η, ω, ξ ∈ Σ. We want to prove that
i. d(η, ω) ≥ 0 and d(η, ω) = 0 iff η = ω;
ii. d(η, ω) = d(ω, η);
iii. d(η, ξ) ≤ d(η, ω) + d(ω, ξ).

The first two properties are obvious. The third property, the triangle inequality, follows from the triangle inequality for real numbers: since $|\eta_i - \xi_i| \leq |\eta_i - \omega_i| + |\omega_i - \xi_i|$ for all i, $\sum_{i=0}^{\infty} \frac{|\eta_i - \xi_i|}{2^i} \leq \sum_{i=0}^{\infty} \frac{|\eta_i - \omega_i|}{2^i} + \sum_{i=0}^{\infty} \frac{|\omega_i - \xi_i|}{2^i}$. This proves that $d(\eta, \xi) \leq d(\eta, \omega) + d(\omega, \xi)$.

- (b) For all $\eta, \xi \in \Sigma$, $|\eta_i \xi_i| \le 1$ for all *i*. Thus $d(\eta, \xi) \le \sum_{i=0}^{\infty} 2^{-i} = 2$.
- $(\mathbf{Q2})$ With the same definitions as in Question 1, let s, t and r be the periodic sequences
 - $\mathbf{s} = (1, 1, 2, 1, 1, 2, 1, 1, 2, \cdots), \quad \mathbf{t} = (1, 2, 1, 2, 1, 2, 1, 2, \cdots), \quad \mathbf{r} = (2, 1, 2, 1, 2, 1, 2, 1, \cdots).$ Calculate $d(\mathbf{s}, \mathbf{t}), d(\mathbf{t}, \mathbf{r})$ and $d(\mathbf{r}, \mathbf{s}).$

Solution. We see that $\mathbf{s} - \mathbf{t} = (0, -1, 1, -1, 0, 0, 0, -1, 1, -1, \cdots)$ which is periodic of period 6. It follows that

$$d(\mathbf{s}, \mathbf{t}) = \sum_{i=0}^{\infty} 2^{-6i} (0/1 + 1/2 + 1/4 + 1/8 + 0/16 + 0/32) = \frac{7}{8} \times \frac{1}{1 - 2^{-6}} = \frac{56}{63}$$

Since $\mathbf{t} - \mathbf{r} = (-1, 1, -1, 1, \cdots)$ we see that $d(\mathbf{t}, \mathbf{r}) = 2$.

Since $\mathbf{s} - \mathbf{r} = (-1, 0, 0, 0, -1, 1, \cdots)$ is periodic of period 6, we see that

$$d(\mathbf{s}, \mathbf{r}) = \sum_{i=0}^{\infty} 2^{-6i} (1/1 + 0/2 + 0/4 + 0/8 + 1/16 + 1/32) = \frac{35}{32} \times \frac{1}{1 - 2^{-6}} = \frac{70}{63}.$$

- (Q3) Let $\Sigma' \subset \Sigma = \{0, 1\}^{\mathbb{N}}$ be the set of all sequences **s** of two symbols 0, 1 with $s_{j+1} = 0$ if $s_j = 1$ (i.e., the sequences in Σ' do not have two consecutive 1's).
 - (a) Confirm that the shift map σ preserves Σ' .
 - (b) Show that periodic points are dense in Σ' .
 - (c) Show that there is a dense orbit in Σ' .

(d) How many fixed points of σ are there in Σ' ? How many period-2 and period-3 orbits?

Solution.

- (a) Let $\eta \in \Sigma'$ so that if $\eta_j = 1$, then $\eta_{j+1} = 0$ for all $j \ge 0$. Therefore, if $\eta_{j+1} = 1$, then $\eta_{j+2} = 0$ for all $j \ge 0$. Since $\sigma(\eta)_j = \eta_{j+1}$, this shows that $\sigma(\eta) \in \Sigma'$.
- (b) Let η ∈ Σ' and ε > 0 be given. We want to find a periodic point ω ∈ Σ' of σ such that d(η, ω) < ε.
 Let N > 0 be such that 2^{-N} < ε. Let ω_i = η_i for i = 0,..., N. We would

Let N > 0 be such that $2^{-n} < \epsilon$. Let $\omega_i = \eta_i$ for i = 0, ..., N. We would like to then define $\omega_{i+N+1} = \omega_i$ for all *i*. However, we may have a problem if $\eta_N = 1$ and η_0 , which would imply $\omega_N = 1 = \omega_{N+1}$, and so ω would not be in Σ' . If this occurs, then increase N by 1. Since $\eta \in \Sigma'$, this choice guarantees that $\omega \in \Sigma'$. It is clear that $d(\eta, \omega) < \epsilon$ and ω is a periodic point of σ .

(c) Let us do the following: say that a "word" of length k is a sequence of zeroes and ones of length k. A word is "admissible" if it satisfies the condition that any 1 must be followed by a 0 (except if the 1 is the final letter of the word). We can concatenate admissible words w_1 and w_2 as follows: if w_1 ends with a 1 and w_2 begins with a 1, then we put a 0 between the words: w_10w_2 ; in all other cases, w_1w_2 is an admissible word. We will denote the concatenation operation by $w_1 \cdot w_2$.

Since the set of admissible words of length k is finite, the set of all admissible words is countable. Let w_1, \ldots, w_n, \ldots be an enumeration of all admissible words. Let $\omega = w_1 \cdot w_2 \cdots w_n \cdots$ be the concatenation of all admissible words. Since each 1 that appears in ω is followed by a 0, $\omega \in \Sigma'$.

Claim: The orbit of ω is dense in Σ .

Check: Let $\eta \in \Sigma'$ and let $\epsilon > 0$ be given. Let $N > \log_2 \epsilon^{-1} + 1$. From the definition of the metric d, we know that if $\eta'_i = \eta_i$ for $i = 0, \ldots, N$, then $d(\eta', \eta), \epsilon$.

Let $w = \eta_0, \eta_1, \ldots, \eta_N$. This is an admissible word of length N+1. Therefore, w appears in ω , or in other words $\omega = w_0 \cdot w \cdots$ where w_0 is an admissible word of length K for some K (and there is no 0 padded between w_0 and w). Therefore $\sigma^K(\omega) = w \cdots$. Thus

$$d(\sigma^K(\omega),\eta) < \epsilon.$$

This prove that the orbit of ω is dense.

(d) Observe that to find the periodic points of $\sigma | \Sigma'$, we can find the periodic points of σ that lie in Σ' . Observe also that each period-k periodic point of $\sigma | \Sigma'$ corresponds to a unique admissible word w of length k such that ww is also admissible (no 0 padding).

k = 1: (fixed point) Only 0 and 1 are admissible length-1 words and 00 is admissible but 11 is not. Thus $\sigma | \Sigma'$ has only one fixed point: $\omega = (0, 0, 0, ...)$. k = 2: Only 00, 10, 01 are admissible length-2 words and each produces a periodic point of $\sigma | \Sigma'$. k = 3: Only 000, 100, 010, 001 and 101 are admissible length-3 words. The first four produce period-3 points for $\sigma | \Sigma'$ but the fifth does not produce a point in Σ since 101101 is not admissible.

In total, there are: 1 fixed point, 3 period-2 points and 4 period-4 points. There are 2 prime period-2 points and 3 prime period-3 points.

- (Q4) Consider the one-sided shift map σ acting on sequences of N symbols, i.e., acting on $\Sigma = \{1, 2, \dots, N\}^{\mathbb{N}}$.
 - (a) How many fixed points of σ^k are there?
 - (b) How many period-2 and period-4 orbits of σ are there in Σ ? How many prime period-2 and -4 orbits are there?

Solution.

- (a) Each fixed point of σ^k corresponds uniquely to a word of length k in N symbols, so there are N^k fixed points.
- (b) N^2 and N^4 . As there are N^1 fixed points, there are $N^2 N^1$ prime period-2 points. Since a period-4 point which is not prime period-4 must also be a period-2 point, there are $N^4 N^2$ prime period-4 points.
- (Q5) Consider a one-dimensional mapping $F(x_n)$ with m prime periodic orbit

$$\mathbf{x} = (x_0, x_1, x_2, \dots, x_{m-1}).$$

Show that the Liapunov exponent of an orbit attracted to this periodic orbit is given by

$$\lambda = \frac{1}{m} \ln \left| \prod_{i=0}^{m-1} F'(x_i) \right|.$$

Thereby, show that $\lambda < 0$.

Solution. Let y_0 have the orbit y_i which converges to this periodic orbit. Possibly after we have relabeled elements in the periodic orbit, we can assume that for each $i: y_{i+km} \to x_i$ as $k \to \infty$. Then, assuming that F' is continuous at each point of the periodic orbit, $F'(y_{i+km}) \to F'(x_i)$.

We know that

$$\lambda(y_0) = \lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N} \ln |F'(y_j)|$$

=
$$\lim_{N \to \infty} \frac{1}{mN} \sum_{k=0}^{N} \sum_{j=0}^{m-1} \ln |F'(y_{j+km})|$$

=
$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(y_{j+km})|$$

=
$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(x_j)| \times \frac{\ln |F'(y_{j+km})|}{\ln |F'(x_j)|}$$

Problem Sheet 4

Let $\epsilon > 0$ be given. Since $y_{i+km} \to x_j$ as $k \to \infty$, there is a K such that for all $k \ge K$, $1 - \epsilon < \frac{\ln |F'(y_{j+km})|}{\ln |F'(x_j)|} < 1 + \epsilon$ for all j. Now, since K is fixed relative to N,

$$\lambda(y_0) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{K} \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(y_{j+km})| + \frac{1}{N} \sum_{k=K+1}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(y_{j+km})|$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{k=K+1}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(y_{j+km})|.$$

Thus

$$(1-\epsilon) \times \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(x_j)| \le \lambda(y_0) \le (1+\epsilon) \times \frac{1}{m} \sum_{j=0}^{m-1} \ln |F'(x_j)|.$$

Since $\epsilon > 0$ was arbitrary, this proves the claim.

Since **x** is an attracting periodic orbit, $|F'(x_i)| < 1$ for all *i*. This proves that $\lambda(y_0) < 0$.

- (Q6) Find the Liapunov exponent of the logistic map $F_{\mu}(x) = \mu x(1-x)$ for $x \in [0,1]$ where:
 - (a) 1 < μ < 3
 (Hint: You may assume that: (a) there exists at most one attracting period orbit for the logistic map; and (b) the basin of attraction for this attracting periodic orbit comprises the entire closed interval [0, 1] minus any repelling fixed points).
 - (b) $3 < \mu < 1 + \sqrt{6}$.

(Hint: use the result of Question 5).

Solution.

(a) $1 < \mu < 3$

By Q1 of PS 1, there is a unique attracting fixed point $x = 1 - 1/\mu$ in this range. We have that $F'_{\mu}(x) = \mu - 2(-1 + \mu) = -\mu + 2$. By the hint and Q5, the Lyapunov exponent of any $y_0 \neq 0$ is $\ln |2 - \mu|$.

(b) $3 < \mu < 1 + \sqrt{6}$.

By Q1 of PS 1, there is a unique attracting period-2 orbit x_+, x_- . We have that $F'_{\mu}(x_+)F'_{\mu}(x_-) = (\mu - (\mu + 1 + \sqrt{a}) \times (\mu - (\mu + 1 - \sqrt{a}) = 1 - a$ where $a = (\mu - 3)(\mu - 1)$. By Q5, we have that the Lyapunov exponent of any $y_0 \neq 0, 1 - 1/\mu$ is $\ln |1 - a|^{\frac{1}{2}}$.

(Q7) Let $f: [0,1] \to [0,1]$ be defined as follows

$$f(x) = \begin{cases} 4x & \text{if } 0 \le x \le 1/4, \\ -(x - \frac{1}{4})(\frac{7}{8} - x) & \text{if } 1/4 < x < 7/8, \\ 2(x - 7/8) & \text{if } 7/8 \le x \le 1. \end{cases}$$

Let $I_0 = [0, \frac{1}{4}]$ and $I_1 = [\frac{7}{8}, 1]$. The aim of this exercise is to show that there is an invariant set $\Lambda \subset [0, 1]$ and a homeomorphism $h : \Lambda \to \Sigma'$ (see Q3) such that $h \circ f | \Lambda = \sigma \circ h$.

- (a) Show that $I_0 \cup I_1 \subset f(I_0)$ and $I_0 \subset f(I_1)$.
- (b) Show that if $\omega \in \Sigma'$, then the set $I_{\omega} = \{x \in [0,1] : f^n(x) \in I_{\omega_n} \text{ for all } n\}$ is non-empty, and contains a single point.
- (c) Let $\Lambda = \bigcap_{n \ge 0} f^{-n}([0, 1])$. Show that if $x \in \Lambda$ iff $f^n(x) \in [0, 1]$ for all $n \ge 0$.
- (d) Show that if $x \in \Lambda$, then $x \in I_0 \cup I_1$. Conclude that $f^n(x) \in \Lambda$ for all $n \ge 0$. Hence show that the itinerary map $h(x) = \omega$ is well-defined.
- (e) Prove that h is continuous, 1-1 and onto.
- (f) How many periodic orbits of period 2, 3 and 6 does f have?

Solution.

- (a) Since $f : x \mapsto 4x$ on I_0 , it $I = [0,1] \subset f(I_0)$. Since $f|I_1$ is affine, with f(7/8) = 0 and f(1) = 1/4, f maps I_1 onto I_0 . Let us note that $f|I_0$ and $f|I_1$ is a 1-1 map.
- (b) Let $\omega \in \Sigma'$. Define $I_{\omega_0,...,\omega_n} = \{x \in I : f^k(x) \in I_{\omega_k} \text{ for } k = 0,...,n\}$. Claim: For all $n \ge 0$, and all $\omega \in \Sigma'$, $I_{\omega_0,...,\omega_n}$ is a non-empty interval. Check: For n = 0, this is trivially true. Assume that it is true for 0, ..., n-1. Now, by the induction hypothesis $I_{\omega_1,...,\omega_n}$ is a non-empty interval that is contained in I_{ω_1} .

There are several possibilities to verify. If $\omega_0 = 0$, $\omega_1 = 0$, then part (a) shows that there is a unique interval in $K \subset I_{\omega_0}$ s.t. $f(K) = I_{\omega_1,\dots,\omega_n}$. This interval K is the sought after interval $I_{\omega_0,\omega_1,\dots,\omega_n}$.

The argument is similar for $\omega_0 = 0$, $\omega_1 = 1$ and $\omega_0 = 1$, $\omega_1 = 0$. However, the argument fails when $\omega_0 = 1 = \omega_1$ – which is fortunate, because that cannot occur when $\omega \in \Sigma'$!

Thus, we have proven the claim by induction.

Claim: For all $n \ge 0$, and all $\omega \in \Sigma'$, $I_{\omega_0,\dots,\omega_n}$ has length $\le 1/2^{n-1}$.

Check: The claim is true for n = 0. For $n \ge 1$, we observe that $f'|I_0 \cup I_1 \ge 2$. Therefore, if $x_0, y_0 \in I_{\omega_0,\dots,\omega_n}$, then $x_k = f^k(x_0), y_k = f^k(y_0) \in I_{\omega_k}$ for each $k = 0, \dots, n$. The mean-value theorem says that

$$|x_n - y_n| \ge 2^1 |x_{n-1} - y_{n-1}| \ge 2^2 |x_{n-2} - y_{n-2}| \ge \dots \ge 2^{n+1} |x_0 - y_0|.$$

Since x_n, y_n both lie in I_0 or I_1 , their distance apart is at most 1/4. Thus

$$|x_0 - y_0| \le 1/2^{n-1}.$$

This shows that any two points in $I_{\omega_0,\ldots,\omega_n}$ are at most $1/2^{n-1}$ apart. This proves the claim.

Clearly, $I_{\omega_0} \supset I_{\omega_0,\omega_1} \supset \cdots \supset I_{\omega_0,\dots,\omega_n} \supset \cdots$, so we have a nested sequence of compact intervals so their intersection I_{ω} is non-empty.

Since the length of these intervals converges to 0, I_{ω} contains a single point.

- (c) Let $x \in \Lambda$. Then $x \in f^{-n}(I)$ for all $n \ge 0$. Therefore $f^n(x) \in I$ for all $n \ge 0$. On the other hand, if $f^n(x) \in I$ for all $n \ge 0$, then $x \in f^{-n}(I)$ for all $n \ge 0$, so $x \in \Lambda$.
- (d) Assume that $x \in \Lambda$. Then $f(x) \in \Lambda$ by (c). The formula for f(x) shows that if $x \notin I_0 \cup I_1$, then f(x) < 0 so $f(x) \notin \Lambda$. Hence $x \in \Lambda$ implies that $x \in I_0 \cup I_1$. Since Λ is *f*-invariant, $f^n(x) \in I_0 \cup I_1$ for all $n \ge 0$. Since I_0, I_1 are disjoint, the itinerary map $-h(x) = \omega$ iff $f^n(x) \in I_{\omega_n}$ for all n -is well-defined.
- (e) h is continuous: Let ε > 0 be given, and let x ∈ Λ. Let ω = h(x) and let N > log₂ ε⁻¹.
 From (b), if |x y| < 2^{-N-1}, and y ∈ Λ, then y ∈ I_{ω0,...,ωN} so x and y share the same itinerary up to the N-th iterate. Thus

$$y \in \Lambda, |x-y| < 2^{-N-1} \implies d(h(x), h(y)) < \epsilon.$$

h is 1-1: If $h(x) = \omega = h(y)$, then from (b), the distance between x and y is at most 2^{-n+1} for all $n \ge 0$. Hence x = y.

h is onto: From (b), I_{ω} is non-empty for all $\omega \in \Sigma'$. Thus, there is an x s.t. $h(x) = \omega$.

(f) Any periodic point of f lies in Λ and our previous work shows that $f|\Lambda$ is conjugate to $\sigma|\Sigma'$. Therefore, we can do all our calculations with the shift map.

We computed the answer for periods 2 and 3 in Q3. For period 6, we can write out all admissible length 6 words, and then pare this list down, as we did in the earlier examples. However, here is a better method.

Recall that a periodic point of period k for $\sigma | \Sigma'$ corresponds to a closed path on the graph G of length k.

G:
$$\bigcirc 0 \bigcirc 1$$

Let A be the adjacency matrix of G: that is $A_{ij} = 1$ iff there is an oriented edge in G running from vertex i to vertex j.

Claim: The number of closed paths of length k in the graph G is $Trace(A^k)$. Check: For k = 1 this is true, as a closed path of length 1 is just a loop from vertex i to vertex i.

Let us suppose that $(i_1, i_2, \ldots, i_{k+1})$ is a path of length k in the graph G, which means that we start at vertex i_1 , proceed to i_2 , etc. It follows that $A_{i_s,i_{s+1}} = 1$ for all $s = 1, \ldots, k$. On the other hand, if $A_{i_s,i_{s+1}} = 1$ for all $s = 1, \ldots, k$, then there is a path $(i_1, i_2, \ldots, i_{k+1})$ is a path of length k in the graph G.

Observe that

$$A_{a,b}^{k} = \sum_{i_{2},i_{3}\cdots,i_{k}} A_{a,i_{2}} A_{i_{2},i_{3}} \cdots A_{i_{k},b}.$$

Since $A_{a,i_2}A_{i_2,i_3}\cdots A_{i_k,b}$ is non-zero (whence 1) iff there is a path of length k in G from a to b, it follows that

$$A_{a,b}^k = \{ \text{length } k \text{ paths in G}, \text{ from } a \text{ to } b \}.$$

The number of closed paths in G of length k is then $\sum_{a} A_{a,a}^{k}$ which is the trace of A^{k} . This proves the claim.

In our case

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array} \right]$$

since one cannot be at 1 and stay at 1. Then

$$A^{2} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, A^{4} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}, A^{6} = \begin{bmatrix} 13 & * \\ * & 5 \end{bmatrix},$$

so there are 13 + 5 = 18 period-6 points.

Therefore there are 18 - (4 - 1) - (3 - 1) - 1 = 12 prime period-6 points. Remark: The eigenvalues of A are $\lambda_{\pm} = \frac{1 \pm \sqrt{5}}{2}$. So

$$\operatorname{Trace}(A^k) = \lambda_+^k + \lambda_-^k \sim 1.6^k.$$

The number of periodic points therefore grows exponentially.

(Q8) Let f(x) = 4x(1-x) and let $\Sigma = \{0,1\}^{\mathbb{N}}$. Prove that there is a continuous surjection h such that

commutes (σ is the shift map). Describe the set of points where h fails to be injective, i.e. the set of $\omega \in \Sigma$ where $h^{-1}(h(\omega))$ contains more than one point. [Hint: find intervals J_0, J_1 with disjoint interiors such that $f(J_i) = I$ and $I = J_0 \cup J_1$. Try to define an itinerary map...]

Solution. Following the hint, let $J_0 = [0, p]$ and $J_1 = [p, 1]$ where $p = \frac{1}{2}$. It is clear these intervals satisfy the properties suggested in the hint. For a point $x \in I$ whose orbit does not contain p, the itinerary of x is unambiguously defined. If the orbit of x contains p at say the k-th step, then $f^k(x) = p$, $f^{k+1}(x) = f(p) = 1$, $f^{k+2}(x) = f(1) = 0$ and then $f^{k+2+j}(0) = 0$ for all $j \ge 0$. Thus, the itinerary of x is unambiguous except at the k-th step, where $f^k(x) = p$ lies in both J_0 and J_1 . In this case, the possible itineraries are:

$$\omega_0 \cdots \omega_{k-1} 0100 \cdots$$
, or $\omega_0 \cdots \omega_{k-1} 1100 \cdots$,

where in both cases $\omega_0 \cdots \omega_{k-1}$ is the same sequence determined by $f^i(x) \in J_{\omega_i}$ for $i = 0, \ldots, k-1$.

We therefore see that every point $x \in I$ can be assigned at most 2 itineraries. Moreover, since $f(J_i) = J_0 \cup J_1$, the IVT argument implies that for any itinerary $\omega \in \Sigma$, there is an $x \in I$ which has an itinerary ω .

At Examples Class 4 on Friday 3rd December the solution to Questions 3 and 7 will be discussed.