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(Q1) Consider the set Σ of sequences of two symbols 0, 1, i.e., Σ = {0, 1}N, with a
distance between sequences s = (s0, s1, s2, · · · ) ∈ Σ and t = (t0, t1, t2, · · · ) ∈ Σ
defined by

d(s, t) =
∞
∑

i=0

|si − ti|
2i

.

(a) Show that d defines a metric on Σ.

(b) Show that d(s, t) ≤ 2.

Solution.

(a) Let η, ω, ξ ∈ Σ. We want to prove that

i. d(η, ω) ≥ 0 and d(η, ω) = 0 iff η = ω;

ii. d(η, ω) = d(ω, η);

iii. d(η, ξ) ≤ d(η, ω) + d(ω, ξ).

The first two properties are obvious. The third property, the triangle inequal-
ity, follows from the triangle inequality for real numbers: since |ηi − ξi| ≤
|ηi − ωi| + |ωi − ξi| for all i,

∑∞
i=0

|ηi−ξi|
2i

≤ ∑∞
i=0

|ηi−ωi|
2i

+
∑∞

i=0
|ωi−ξi|

2i
. This

proves that d(η, ξ) ≤ d(η, ω) + d(ω, ξ).

(b) For all η, ξ ∈ Σ, |ηi − ξi| ≤ 1 for all i. Thus d(η, ξ) ≤
∑∞

i=0 2
−i = 2.

(Q2) With the same definitions as in Question 1, let s, t and r be the periodic sequences

s = (1, 1, 2, 1, 1, 2, 1, 1, 2, · · · ), t = (1, 2, 1, 2, 1, 2, 1, 2, · · · ), r = (2, 1, 2, 1, 2, 1, 2, 1, · · · ).

Calculate d(s, t), d(t, r) and d(r, s).

Solution. We see that s−t = (0,−1, 1,−1, 0, 0, 0,−1, 1,−1, · · · ) which is periodic
of period 6. It follows that

d(s, t) =
∞
∑

i=0

2−6i(0/1 + 1/2 + 1/4 + 1/8 + 0/16 + 0/32) =
7

8
× 1

1− 2−6
=

56

63
.

Since t− r = (−1, 1,−1, 1, · · · ) we see that d(t, r) = 2.

Since s− r = (−1, 0, 0, 0,−1, 1, · · · ) is periodic of period 6, we see that

d(s, r) =
∞
∑

i=0

2−6i(1/1 + 0/2 + 0/4 + 0/8 + 1/16 + 1/32) =
35

32
× 1

1− 2−6
=

70

63
.

(Q3) Let Σ′ ⊂ Σ = {0, 1}N be the set of all sequences s of two symbols 0, 1 with sj+1 = 0
if sj = 1 (i.e., the sequences in Σ′ do not have two consecutive 1’s).

(a) Confirm that the shift map σ preserves Σ′.

(b) Show that periodic points are dense in Σ′.

(c) Show that there is a dense orbit in Σ′.
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(d) How many fixed points of σ are there in Σ′? How many period-2 and period-3
orbits?

Solution.

(a) Let η ∈ Σ′ so that if ηj = 1, then ηj+1 = 0 for all j ≥ 0. Therefore, if ηj+1 = 1,
then ηj+2 = 0 for all j ≥ 0. Since σ(η)j = ηj+1, this shows that σ(η) ∈ Σ′.

(b) Let η ∈ Σ′ and ǫ > 0 be given. We want to find a periodic point ω ∈ Σ′ of σ
such that d(η, ω) < ǫ.

Let N > 0 be such that 2−N < ǫ. Let ωi = ηi for i = 0, . . . , N . We would
like to then define ωi+N+1 = ωi for all i. However, we may have a problem if
ηN = 1 and η0, which would imply ωN = 1 = ωN+1, and so ω would not be in
Σ′. If this occurs, then increase N by 1. Since η ∈ Σ′, this choice guarantees
that ω ∈ Σ′. It is clear that d(η, ω) < ǫ and ω is a periodic point of σ.

(c) Let us do the following: say that a “word” of length k is a sequence of zeroes
and ones of length k. A word is “admissible” if it satisfies the condition that
any 1 must be followed by a 0 (except if the 1 is the final letter of the word).
We can concatenate admissible words w1 and w2 as follows: if w1 ends with
a 1 and w2 begins with a 1, then we put a 0 between the words: w10w2; in all
other cases, w1w2 is an admissible word. We will denote the concatenation
operation by w1 · w2.

Since the set of admissible words of length k is finite, the set of all admissible
words is countable. Let w1, . . . , wn, . . . be an enumeration of all admissible
words. Let ω = w1 ·w2 · · ·wn · · · be the concatenation of all admissible words.
Since each 1 that appears in ω is followed by a 0, ω ∈ Σ′.

Claim: The orbit of ω is dense in Σ.

Check: Let η ∈ Σ′ and let ǫ > 0 be given. Let N > log2 ǫ
−1 + 1. From

the definition of the metric d, we know that if η′i = ηi for i = 0, . . . , N , then
d(η′, η), ǫ.

Let w = η0, η1, . . . , ηN . This is an admissible word of length N+1. Therefore,
w appears in ω, or in other words ω = w0 · w · · · where w0 is an admissible
word of length K for some K (and there is no 0 padded between w0 and w).
Therefore σK(ω) = w · · · . Thus

d(σK(ω), η) < ǫ.

This prove that the orbit of ω is dense.

(d) Observe that to find the periodic points of σ|Σ′, we can find the periodic
points of σ that lie in Σ′. Observe also that each period-k periodic point of
σ|Σ′ corresponds to a unique admissible word w of length k such that ww is
also admissible (no 0 padding).

k = 1: (fixed point) Only 0 and 1 are admissible length-1 words and 00 is
admissible but 11 is not. Thus σ|Σ′ has only one fixed point: ω = (0, 0, 0, . . .).

k = 2: Only 00, 10, 01 are admissible length-2 words and each produces a
periodic point of σ|Σ′.
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k = 3: Only 000, 100, 010, 001 and 101 are admissible length-3 words. The
first four produce period-3 points for σ|Σ′ but the fifth does not produce a
point in Σ since 101101 is not admissible.

In total, there are: 1 fixed point, 3 period-2 points and 4 period-4 points.
There are 2 prime period-2 points and 3 prime period-3 points.

(Q4) Consider the one-sided shift map σ acting on sequences of N symbols, i.e., acting
on Σ = {1, 2, · · · , N}N.

(a) How many fixed points of σk are there?

(b) How many period-2 and period-4 orbits of σ are there in Σ? How many prime
period-2 and -4 orbits are there?

Solution.

(a) Each fixed point of σk corresponds uniquely to a word of length k in N
symbols, so there are Nk fixed points.

(b) N2 and N4. As there are N1 fixed points, there are N2 −N1 prime period-2
points. Since a period-4 point which is not prime period-4 must also be a
period-2 point, there are N4 −N2 prime period-4 points.

(Q5) Consider a one–dimensional mapping F (xn) with m prime periodic orbit

x = (x0, x1, x2, . . . , xm−1).

Show that the Liapunov exponent of an orbit attracted to this periodic orbit is
given by

λ =
1

m
ln

∣

∣

∣

∣

∣

m−1
∏

i=0

F ′(xi)

∣

∣

∣

∣

∣

.

Thereby, show that λ < 0.

Solution. Let y0 have the orbit yi which converges to this periodic orbit. Possibly
after we have relabeled elements in the periodic orbit, we can assume that for each
i: yi+km → xi as k → ∞. Then, assuming that F ′ is continuous at each point of
the periodic orbit, F ′(yi+km) → F ′(xi).

We know that

λ(y0) = lim
N→∞

1

N

N
∑

j=0

ln |F ′(yj)|

= lim
N→∞

1

mN

N
∑

k=0

m−1
∑

j=0

ln |F ′(yj+km)|

= lim
N→∞

1

N

N
∑

k=0

1

m

m−1
∑

j=0

ln |F ′(yj+km)|

= lim
N→∞

1

N

N
∑

k=0

1

m

m−1
∑

j=0

ln |F ′(xj)| ×
ln |F ′(yj+km)|
ln |F ′(xj)|
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Let ǫ > 0 be given. Since yi+km → xj as k → ∞, there is a K such that for all

k ≥ K, 1− ǫ <
ln |F ′(yj+km)|
ln |F ′(xj)| < 1 + ǫ for all j. Now, since K is fixed relative to N ,

λ(y0) = lim
N→∞

1

N

K
∑

k=0

1

m

m−1
∑

j=0

ln |F ′(yj+km)|+
1

N

N
∑

k=K+1

1

m

m−1
∑

j=0

ln |F ′(yj+km)|

= lim
N→∞

1

N

N
∑

k=K+1

1

m

m−1
∑

j=0

ln |F ′(yj+km)|.

Thus

(1− ǫ)× 1

m

m−1
∑

j=0

ln |F ′(xj)| ≤ λ(y0) ≤ (1 + ǫ)× 1

m

m−1
∑

j=0

ln |F ′(xj)|.

Since ǫ > 0 was arbitrary, this proves the claim.

Since x is an attracting periodic orbit, |F ′(xi)| < 1 for all i. This proves that
λ(y0) < 0.

(Q6) Find the Liapunov exponent of the logistic map Fµ(x) = µx(1 − x) for x ∈ [0, 1]
where:

(a) 1 < µ < 3
(Hint: You may assume that: (a) there exists at most one attracting period
orbit for the logistic map; and (b) the basin of attraction for this attracting
periodic orbit comprises the entire closed interval [0, 1] minus any repelling
fixed points).

(b) 3 < µ < 1 +
√
6.

(Hint: use the result of Question 5).

Solution.

(a) 1 < µ < 3
By Q1 of PS 1, there is a unique attracting fixed point x = 1 − 1/µ in this
range. We have that F ′

µ(x) = µ− 2(−1 + µ) = −µ+ 2. By the hint and Q5,
the Lyapunov exponent of any y0 6= 0 is ln |2− µ|.

(b) 3 < µ < 1 +
√
6.

By Q1 of PS 1, there is a unique attracting period-2 orbit x+, x−. We have
that F ′

µ(x+)F
′
µ(x−) = (µ− (µ+ 1 +

√
a)× (µ− (µ+ 1−√

a) = 1− a where
a = (µ − 3)(µ − 1). By Q5, we have that the Lyapunov exponent of any

y0 6= 0, 1− 1/µ is ln |1− a| 12 .

(Q7) Let f : [0, 1] → [0, 1] be defined as follows

f(x) =











4x if 0 ≤ x ≤ 1/4,

−(x− 1
4
)(7

8
− x) if 1/4 < x < 7/8,

2(x− 7/8) if 7/8 ≤ x ≤ 1.
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Let I0 = [0, 1
4
] and I1 = [7

8
, 1]. The aim of this exercise is to show that there is

an invariant set Λ ⊂ [0, 1] and a homeomorphism h : Λ → Σ′ (see Q3) such that
h ◦ f |Λ = σ ◦ h.

(a) Show that I0 ∪ I1 ⊂ f(I0) and I0 ⊂ f(I1).

(b) Show that if ω ∈ Σ′, then the set Iω = {x ∈ [0, 1] : fn(x) ∈ Iωn
for all n} is

non-empty, and contains a single point.

(c) Let Λ = ∩n≥0f
−n([0, 1]). Show that if x ∈ Λ iff fn(x) ∈ [0, 1] for all n ≥ 0.

(d) Show that if x ∈ Λ, then x ∈ I0 ∪ I1. Conclude that fn(x) ∈ Λ for all n ≥ 0.
Hence show that the itinerary map h(x) = ω is well-defined.

(e) Prove that h is continuous, 1-1 and onto.

(f) How many periodic orbits of period 2, 3 and 6 does f have?

Solution.

(a) Since f : x 7→ 4x on I0, it I = [0, 1] ⊂ f(I0). Since f |I1 is affine, with
f(7/8) = 0 and f(1) = 1/4, f maps I1 onto I0.

Let us note that f |I0 and f |I1 is a 1-1 map.

(b) Let ω ∈ Σ′. Define Iω0,...,ωn
= {x ∈ I : fk(x) ∈ Iωk

for k = 0, . . . , n}.
Claim: For all n ≥ 0, and all ω ∈ Σ′, Iω0,...,ωn

is a non-empty interval.

Check: For n = 0, this is trivially true. Assume that it is true for 0, . . . , n−1.
Now, by the induction hypothesis Iω1,...,ωn

is a non-empty interval that is
contained in Iω1

.

There are several possibilities to verify. If ω0 = 0, ω1 = 0, then part (a) shows
that there is a unique interval in K ⊂ Iω0

s.t. f(K) = Iω1,...,ωn
. This interval

K is the sought after interval Iω0,ω1,...,ωn
.

The argument is similar for ω0 = 0, ω1 = 1 and ω0 = 1, ω1 = 0. However, the
argument fails when ω0 = 1 = ω1 – which is fortunate, because that cannot
occur when ω ∈ Σ′!

Thus, we have proven the claim by induction.

Claim: For all n ≥ 0, and all ω ∈ Σ′, Iω0,...,ωn
has length ≤ 1/2n−1.

Check: The claim is true for n = 0. For n ≥ 1, we observe that f ′|I0∪ I1 ≥ 2.
Therefore, if x0, y0 ∈ Iω0,...,ωn

, then xk = fk(x0), yk = fk(y0) ∈ Iωk
for each

k = 0, . . . , n. The mean-value theorem says that

|xn − yn| ≥ 21|xn−1 − yn−1| ≥ 22|xn−2 − yn−2| ≥ · · · ≥ 2n+1|x0 − y0|.

Since xn, yn both lie in I0 or I1, their distance apart is at most 1/4. Thus

|x0 − y0| ≤ 1/2n−1.

This shows that any two points in Iω0,...,ωn
are at most 1/2n−1 apart. This

proves the claim.

Clearly, Iω0
⊃ Iω0,ω1

⊃ · · · ⊃ Iω0,...,ωn
⊃ · · · , so we have a nested sequence of

compact intervals so their intersection Iω is non-empty.

Since the length of these intervals converges to 0, Iω contains a single point.
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(c) Let x ∈ Λ. Then x ∈ f−n(I) for all n ≥ 0. Therefore fn(x) ∈ I for all n ≥ 0.

On the other hand, if fn(x) ∈ I for all n ≥ 0, then x ∈ f−n(I) for all n ≥ 0,
so x ∈ Λ.

(d) Assume that x ∈ Λ. Then f(x) ∈ Λ by (c). The formula for f(x) shows that
if x 6∈ I0∪I1, then f(x) < 0 so f(x) 6∈ Λ. Hence x ∈ Λ implies that x ∈ I0∪I1.
Since Λ is f -invariant, fn(x) ∈ I0 ∪ I1 for all n ≥ 0. Since I0, I1 are disjoint,
the itinerary map – h(x) = ω iff fn(x) ∈ Iωn

for all n – is well-defined.

(e) h is continuous: Let ǫ > 0 be given, and let x ∈ Λ. Let ω = h(x) and let
N > log2 ǫ

−1.

From (b), if |x − y| < 2−N−1, and y ∈ Λ, then y ∈ Iω0,...,ωN
so x and y share

the same itinerary up to the N -th iterate. Thus

y ∈ Λ, |x− y| < 2−N−1 =⇒ d(h(x), h(y)) < ǫ.

h is 1-1: If h(x) = ω = h(y), then from (b), the distance between x and y is
at most 2−n+1 for all n ≥ 0. Hence x = y.

h is onto: From (b), Iω is non-empty for all ω ∈ Σ′. Thus, there is an x s.t.
h(x) = ω.

(f) Any periodic point of f lies in Λ and our previous work shows that f |Λ is
conjugate to σ|Σ′. Therefore, we can do all our calculations with the shift
map.

We computed the answer for periods 2 and 3 in Q3. For period 6, we can
write out all admissible length 6 words, and then pare this list down, as we
did in the earlier examples. However, here is a better method.

Recall that a periodic point of period k for σ|Σ′ corresponds to a closed path
on the graph G of length k.

G : 099
** 1jj

Let A be the adjacency matrix of G: that is Aij = 1 iff there is an oriented
edge in G running from vertex i to vertex j.

Claim: The number of closed paths of length k in the graph G is Trace(Ak).

Check: For k = 1 this is true, as a closed path of length 1 is just a loop from
vertex i to vertex i.

Let us suppose that (i1, i2, . . . , ik+1) is a path of length k in the graph G,
which means that we start at vertex i1, proceed to i2, etc. It follows that
Ais,is+1

= 1 for all s = 1, . . . , k. On the other hand, if Ais,is+1
= 1 for all

s = 1, . . . , k, then there is a path (i1, i2, . . . , ik+1) is a path of length k in the
graph G.

Observe that
Ak

a,b =
∑

i2,i3··· ,ik

Aa,i2Ai2,i3 · · ·Aik,b.

Since Aa,i2Ai2,i3 · · ·Aik,b is non-zero (whence 1) iff there is a path of length k
in G from a to b, it follows that

Ak
a,b = {length k paths in G, from a to b}.
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The number of closed paths in G of length k is then
∑

a A
k
a,a which is the

trace of Ak. This proves the claim.

In our case

A =

[

1 1
1 0

]

,

since one cannot be at 1 and stay at 1. Then

A2 =

[

2 1
1 1

]

, A4 =

[

5 3
3 2

]

, A6 =

[

13 ∗
∗ 5

]

,

so there are 13 + 5 = 18 period-6 points.

Therefore there are 18− (4− 1)− (3− 1)− 1 = 12 prime period-6 points.

Remark: The eigenvalues of A are λ± = 1±
√
5

2
. So

Trace(Ak) = λk
+ + λk

− ∼ 1.6k.

The number of periodic points therefore grows exponentially.

(Q8) Let f(x) = 4x(1 − x) and let Σ = {0, 1}N. Prove that there is a continuous
surjection h such that

Σ
σ // Σ

I
f

//
��
h

I
��

h

commutes (σ is the shift map). Describe the set of points where h fails to be
injective, i.e. the set of ω ∈ Σ where h−1(h(ω)) contains more than one point.
[Hint: find intervals J0, J1 with disjoint interiors such that f(Ji) = I and I =
J0 ∪ J1. Try to define an itinerary map...]

Solution. Following the hint, let J0 = [0, p] and J1 = [p, 1] where p = 1
2
. It is

clear these intervals satisfy the properties suggested in the hint. For a point x ∈ I
whose orbit does not contain p, the itinerary of x is unambiguously defined. If
the orbit of x contains p at say the k-th step, then fk(x) = p, fk+1(x) = f(p) =
1, fk+2(x) = f(1) = 0 and then fk+2+j(0) = 0 for all j ≥ 0. Thus, the itinerary of
x is unambiguous except at the k-th step, where fk(x) = p lies in both J0 and J1.
In this case, the possible itineraries are:

ω0 · · ·ωk−10100 · · · , or ω0 · · ·ωk−11100 · · · ,

where in both cases ω0 · · ·ωk−1 is the same sequence determined by f i(x) ∈ Jωi
for

i = 0, . . . , k − 1.

We therefore see that every point x ∈ I can be assigned at most 2 itineraries.
Moreover, since f(Ji) = J0 ∪ J1, the IVT argument implies that for any itinerary
ω ∈ Σ, there is an x ∈ I which has an itinerary ω.

At Examples Class 4 on Friday 3rd December the solution to Questions 3

and 7 will be discussed.


