Dynamical Systems (MATH11027)
(Q1) Consider the set Σ of sequences of two symbols 0,1 , i.e., $\Sigma=\{0,1\}^{\mathbb{N}}$, with a distance between sequences $\mathbf{s}=\left(s_{0}, s_{1}, s_{2}, \cdots\right) \in \Sigma$ and $\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \cdots\right) \in \Sigma$ defined by

$$
d(\mathbf{s}, \mathbf{t})=\sum_{i=0}^{\infty} \frac{\left|s_{i}-t_{i}\right|}{2^{i}}
$$

(a) Show that d defines a metric on Σ.
(b) Show that $d(\mathbf{s}, \mathbf{t}) \leq 2$.

Solution.

(a) Let $\eta, \omega, \xi \in \Sigma$. We want to prove that
i. $d(\eta, \omega) \geq 0$ and $d(\eta, \omega)=0$ iff $\eta=\omega$;
ii. $d(\eta, \omega)=d(\omega, \eta)$;
iii. $d(\eta, \xi) \leq d(\eta, \omega)+d(\omega, \xi)$.

The first two properties are obvious. The third property, the triangle inequality, follows from the triangle inequality for real numbers: since $\left|\eta_{i}-\xi_{i}\right| \leq$ $\left|\eta_{i}-\omega_{i}\right|+\left|\omega_{i}-\xi_{i}\right|$ for all $i, \sum_{i=0}^{\infty} \frac{\left|\eta_{i}-\xi_{i}\right|}{2^{i}} \leq \sum_{i=0}^{\infty} \frac{\left|\eta_{i}-\omega_{i}\right|}{2^{i}}+\sum_{i=0}^{\infty} \frac{\left|\omega_{i}-\xi_{i}\right|}{2^{i}}$. This proves that $d(\eta, \xi) \leq d(\eta, \omega)+d(\omega, \xi)$.
(b) For all $\eta, \xi \in \Sigma,\left|\eta_{i}-\xi_{i}\right| \leq 1$ for all i. Thus $d(\eta, \xi) \leq \sum_{i=0}^{\infty} 2^{-i}=2$.
(Q2) With the same definitions as in Question 1, let \mathbf{s}, \mathbf{t} and \mathbf{r} be the periodic sequences $\mathbf{s}=(1,1,2,1,1,2,1,1,2, \cdots), \mathbf{t}=(1,2,1,2,1,2,1,2, \cdots), \mathbf{r}=(2,1,2,1,2,1,2,1, \cdots)$.

Calculate $d(\mathbf{s}, \mathbf{t}), d(\mathbf{t}, \mathbf{r})$ and $d(\mathbf{r}, \mathbf{s})$.
Solution. We see that $\mathbf{s}-\mathbf{t}=(0,-1,1,-1,0,0,0,-1,1,-1, \cdots)$ which is periodic of period 6. It follows that

$$
d(\mathbf{s}, \mathbf{t})=\sum_{i=0}^{\infty} 2^{-6 i}(0 / 1+1 / 2+1 / 4+1 / 8+0 / 16+0 / 32)=\frac{7}{8} \times \frac{1}{1-2^{-6}}=\frac{56}{63}
$$

Since $\mathbf{t}-\mathbf{r}=(-1,1,-1,1, \cdots)$ we see that $d(\mathbf{t}, \mathbf{r})=2$.
Since $\mathbf{s}-\mathbf{r}=(-1,0,0,0,-1,1, \cdots)$ is periodic of period 6 , we see that

$$
d(\mathbf{s}, \mathbf{r})=\sum_{i=0}^{\infty} 2^{-6 i}(1 / 1+0 / 2+0 / 4+0 / 8+1 / 16+1 / 32)=\frac{35}{32} \times \frac{1}{1-2^{-6}}=\frac{70}{63}
$$

(Q3) Let $\Sigma^{\prime} \subset \Sigma=\{0,1\}^{\mathbb{N}}$ be the set of all sequences \mathbf{s} of two symbols 0,1 with $s_{j+1}=0$ if $s_{j}=1$ (i.e., the sequences in Σ^{\prime} do not have two consecutive 1^{\prime} 's).
(a) Confirm that the shift map σ preserves Σ^{\prime}.
(b) Show that periodic points are dense in Σ^{\prime}.
(c) Show that there is a dense orbit in Σ^{\prime}.
(d) How many fixed points of σ are there in Σ^{\prime} ? How many period-2 and period-3 orbits?

Solution.

(a) Let $\eta \in \Sigma^{\prime}$ so that if $\eta_{j}=1$, then $\eta_{j+1}=0$ for all $j \geq 0$. Therefore, if $\eta_{j+1}=1$, then $\eta_{j+2}=0$ for all $j \geq 0$. Since $\sigma(\eta)_{j}=\eta_{j+1}$, this shows that $\sigma(\eta) \in \Sigma^{\prime}$.
(b) Let $\eta \in \Sigma^{\prime}$ and $\epsilon>0$ be given. We want to find a periodic point $\omega \in \Sigma^{\prime}$ of σ such that $d(\eta, \omega)<\epsilon$.
Let $N>0$ be such that $2^{-N}<\epsilon$. Let $\omega_{i}=\eta_{i}$ for $i=0, \ldots, N$. We would like to then define $\omega_{i+N+1}=\omega_{i}$ for all i. However, we may have a problem if $\eta_{N}=1$ and η_{0}, which would imply $\omega_{N}=1=\omega_{N+1}$, and so ω would not be in Σ^{\prime}. If this occurs, then increase N by 1 . Since $\eta \in \Sigma^{\prime}$, this choice guarantees that $\omega \in \Sigma^{\prime}$. It is clear that $d(\eta, \omega)<\epsilon$ and ω is a periodic point of σ.
(c) Let us do the following: say that a "word" of length k is a sequence of zeroes and ones of length k. A word is "admissible" if it satisfies the condition that any 1 must be followed by a 0 (except if the 1 is the final letter of the word). We can concatenate admissible words w_{1} and w_{2} as follows: if w_{1} ends with a 1 and w_{2} begins with a 1 , then we put a 0 between the words: $w_{1} 0 w_{2}$; in all other cases, $w_{1} w_{2}$ is an admissible word. We will denote the concatenation operation by $w_{1} \cdot w_{2}$.
Since the set of admissible words of length k is finite, the set of all admissible words is countable. Let $w_{1}, \ldots, w_{n}, \ldots$ be an enumeration of all admissible words. Let $\omega=w_{1} \cdot w_{2} \cdots w_{n} \cdots$ be the concatenation of all admissible words. Since each 1 that appears in ω is followed by a $0, \omega \in \Sigma^{\prime}$.
Claim: The orbit of ω is dense in Σ.
Check: Let $\eta \in \Sigma^{\prime}$ and let $\epsilon>0$ be given. Let $N>\log _{2} \epsilon^{-1}+1$. From the definition of the metric d, we know that if $\eta_{i}^{\prime}=\eta_{i}$ for $i=0, \ldots, N$, then $d\left(\eta^{\prime}, \eta\right), \epsilon$.
Let $w=\eta_{0}, \eta_{1}, \ldots, \eta_{N}$. This is an admissible word of length $N+1$. Therefore, w appears in ω, or in other words $\omega=w_{0} \cdot w \cdots$ where w_{0} is an admissible word of length K for some K (and there is no 0 padded between w_{0} and w). Therefore $\sigma^{K}(\omega)=w \cdots$. Thus

$$
d\left(\sigma^{K}(\omega), \eta\right)<\epsilon
$$

This prove that the orbit of ω is dense.
(d) Observe that to find the periodic points of $\sigma \mid \Sigma^{\prime}$, we can find the periodic points of σ that lie in Σ^{\prime}. Observe also that each period- k periodic point of $\sigma \mid \Sigma^{\prime}$ corresponds to a unique admissible word w of length k such that $w w$ is also admissible (no 0 padding).
$k=1$: (fixed point) Only 0 and 1 are admissible length- 1 words and 00 is admissible but 11 is not. Thus $\sigma \mid \Sigma^{\prime}$ has only one fixed point: $\omega=(0,0,0, \ldots)$.
$k=2$: Only $00,10,01$ are admissible length- 2 words and each produces a periodic point of $\sigma \mid \Sigma^{\prime}$.
$k=3:$ Only $000,100,010,001$ and 101 are admissible length- 3 words. The first four produce period-3 points for $\sigma \mid \Sigma^{\prime}$ but the fifth does not produce a point in Σ since 101101 is not admissible.
In total, there are: 1 fixed point, 3 period- 2 points and 4 period- 4 points. There are 2 prime period- 2 points and 3 prime period- 3 points.
(Q4) Consider the one-sided shift map σ acting on sequences of N symbols, i.e., acting on $\Sigma=\{1,2, \cdots, N\}^{\mathbb{N}}$.
(a) How many fixed points of σ^{k} are there?
(b) How many period-2 and period-4 orbits of σ are there in Σ ? How many prime period- 2 and -4 orbits are there?

Solution.

(a) Each fixed point of σ^{k} corresponds uniquely to a word of length k in N symbols, so there are N^{k} fixed points.
(b) N^{2} and N^{4}. As there are N^{1} fixed points, there are $N^{2}-N^{1}$ prime period-2 points. Since a period-4 point which is not prime period-4 must also be a period-2 point, there are $N^{4}-N^{2}$ prime period-4 points.
(Q5) Consider a one-dimensional mapping $F\left(x_{n}\right)$ with m prime periodic orbit

$$
\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{m-1}\right)
$$

Show that the Liapunov exponent of an orbit attracted to this periodic orbit is given by

$$
\lambda=\frac{1}{m} \ln \left|\prod_{i=0}^{m-1} F^{\prime}\left(x_{i}\right)\right| .
$$

Thereby, show that $\lambda<0$.
Solution. Let y_{0} have the orbit y_{i} which converges to this periodic orbit. Possibly after we have relabeled elements in the periodic orbit, we can assume that for each $i: y_{i+k m} \rightarrow x_{i}$ as $k \rightarrow \infty$. Then, assuming that F^{\prime} is continuous at each point of the periodic orbit, $F^{\prime}\left(y_{i+k m}\right) \rightarrow F^{\prime}\left(x_{i}\right)$.
We know that

$$
\begin{aligned}
\lambda\left(y_{0}\right) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N} \ln \left|F^{\prime}\left(y_{j}\right)\right| \\
& =\lim _{N \rightarrow \infty} \frac{1}{m N} \sum_{k=0}^{N} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(y_{j+k m}\right)\right| \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(y_{j+k m}\right)\right| \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(x_{j}\right)\right| \times \frac{\ln \left|F^{\prime}\left(y_{j+k m}\right)\right|}{\ln \left|F^{\prime}\left(x_{j}\right)\right|}
\end{aligned}
$$

Let $\epsilon>0$ be given. Since $y_{i+k m} \rightarrow x_{j}$ as $k \rightarrow \infty$, there is a K such that for all $k \geq K, 1-\epsilon<\frac{\ln \left|F^{\prime}\left(y_{j}+k m\right)\right|}{\ln \left|F^{\prime}\left(x_{j}\right)\right|}<1+\epsilon$ for all j. Now, since K is fixed relative to N,

$$
\begin{aligned}
\lambda\left(y_{0}\right) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{K} \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(y_{j+k m}\right)\right|+\frac{1}{N} \sum_{k=K+1}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(y_{j+k m}\right)\right| \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=K+1}^{N} \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(y_{j+k m}\right)\right| .
\end{aligned}
$$

Thus

$$
(1-\epsilon) \times \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(x_{j}\right)\right| \leq \lambda\left(y_{0}\right) \leq(1+\epsilon) \times \frac{1}{m} \sum_{j=0}^{m-1} \ln \left|F^{\prime}\left(x_{j}\right)\right|
$$

Since $\epsilon>0$ was arbitrary, this proves the claim.
Since \mathbf{x} is an attracting periodic orbit, $\left|F^{\prime}\left(x_{i}\right)\right|<1$ for all i. This proves that $\lambda\left(y_{0}\right)<0$.
(Q6) Find the Liapunov exponent of the logistic map $F_{\mu}(x)=\mu x(1-x)$ for $x \in[0,1]$ where:
(a) $1<\mu<3$
(Hint: You may assume that: (a) there exists at most one attracting period orbit for the logistic map; and (b) the basin of attraction for this attracting periodic orbit comprises the entire closed interval $[0,1]$ minus any repelling fixed points).
(b) $3<\mu<1+\sqrt{6}$.
(Hint: use the result of Question 5).

Solution.

(a) $1<\mu<3$

By Q1 of PS 1, there is a unique attracting fixed point $x=1-1 / \mu$ in this range. We have that $F_{\mu}^{\prime}(x)=\mu-2(-1+\mu)=-\mu+2$. By the hint and Q5, the Lyapunov exponent of any $y_{0} \neq 0$ is $\ln |2-\mu|$.
(b) $3<\mu<1+\sqrt{6}$.

By Q1 of PS 1, there is a unique attracting period-2 orbit x_{+}, x_{-}. We have that $F_{\mu}^{\prime}\left(x_{+}\right) F_{\mu}^{\prime}\left(x_{-}\right)=(\mu-(\mu+1+\sqrt{a}) \times(\mu-(\mu+1-\sqrt{a})=1-a$ where $a=(\mu-3)(\mu-1)$. By Q5, we have that the Lyapunov exponent of any $y_{0} \neq 0,1-1 / \mu$ is $\ln |1-a|^{\frac{1}{2}}$.
(Q7) Let $f:[0,1] \rightarrow[0,1]$ be defined as follows

$$
f(x)= \begin{cases}4 x & \text { if } 0 \leq x \leq 1 / 4 \\ -\left(x-\frac{1}{4}\right)\left(\frac{7}{8}-x\right) & \text { if } 1 / 4<x<7 / 8 \\ 2(x-7 / 8) & \text { if } 7 / 8 \leq x \leq 1\end{cases}
$$

Let $I_{0}=\left[0, \frac{1}{4}\right]$ and $I_{1}=\left[\frac{7}{8}, 1\right]$. The aim of this exercise is to show that there is an invariant set $\Lambda \subset[0,1]$ and a homeomorphism $h: \Lambda \rightarrow \Sigma^{\prime}$ (see Q3) such that $h \circ f \mid \Lambda=\sigma \circ h$.
(a) Show that $I_{0} \cup I_{1} \subset f\left(I_{0}\right)$ and $I_{0} \subset f\left(I_{1}\right)$.
(b) Show that if $\omega \in \Sigma^{\prime}$, then the set $I_{\omega}=\left\{x \in[0,1]: f^{n}(x) \in I_{\omega_{n}}\right.$ for all $\left.n\right\}$ is non-empty, and contains a single point.
(c) Let $\Lambda=\cap_{n \geq 0} f^{-n}([0,1])$. Show that if $x \in \Lambda$ iff $f^{n}(x) \in[0,1]$ for all $n \geq 0$.
(d) Show that if $x \in \Lambda$, then $x \in I_{0} \cup I_{1}$. Conclude that $f^{n}(x) \in \Lambda$ for all $n \geq 0$. Hence show that the itinerary map $h(x)=\omega$ is well-defined.
(e) Prove that h is continuous, 1-1 and onto.
(f) How many periodic orbits of period 2, 3 and 6 does f have?

Solution.

(a) Since $f: x \mapsto 4 x$ on I_{0}, it $I=[0,1] \subset f\left(I_{0}\right)$. Since $f \mid I_{1}$ is affine, with $f(7 / 8)=0$ and $f(1)=1 / 4, f$ maps I_{1} onto I_{0}.
Let us note that $f \mid I_{0}$ and $f \mid I_{1}$ is a 1-1 map.
(b) Let $\omega \in \Sigma^{\prime}$. Define $I_{\omega_{0}, \ldots, \omega_{n}}=\left\{x \in I: f^{k}(x) \in I_{\omega_{k}}\right.$ for $\left.k=0, \ldots, n\right\}$.

Claim: For all $n \geq 0$, and all $\omega \in \Sigma^{\prime}, I_{\omega_{0}, \ldots, \omega_{n}}$ is a non-empty interval.
Check: For $n=0$, this is trivially true. Assume that it is true for $0, \ldots, n-1$. Now, by the induction hypothesis $I_{\omega_{1}, \ldots, \omega_{n}}$ is a non-empty interval that is contained in $I_{\omega_{1}}$.
There are several possibilities to verify. If $\omega_{0}=0, \omega_{1}=0$, then part (a) shows that there is a unique interval in $K \subset I_{\omega_{0}}$ s.t. $f(K)=I_{\omega_{1}, \ldots, \omega_{n}}$. This interval K is the sought after interval $I_{\omega_{0}, \omega_{1}, \ldots, \omega_{n}}$.
The argument is similar for $\omega_{0}=0, \omega_{1}=1$ and $\omega_{0}=1, \omega_{1}=0$. However, the argument fails when $\omega_{0}=1=\omega_{1}$ - which is fortunate, because that cannot occur when $\omega \in \Sigma^{\prime}$!
Thus, we have proven the claim by induction.
Claim: For all $n \geq 0$, and all $\omega \in \Sigma^{\prime}, I_{\omega_{0}, \ldots, \omega_{n}}$ has length $\leq 1 / 2^{n-1}$.
Check: The claim is true for $n=0$. For $n \geq 1$, we observe that $f^{\prime} \mid I_{0} \cup I_{1} \geq 2$. Therefore, if $x_{0}, y_{0} \in I_{\omega_{0}, \ldots, \omega_{n}}$, then $x_{k}=f^{k}\left(x_{0}\right), y_{k}=f^{k}\left(y_{0}\right) \in I_{\omega_{k}}$ for each $k=0, \ldots, n$. The mean-value theorem says that

$$
\left|x_{n}-y_{n}\right| \geq 2^{1}\left|x_{n-1}-y_{n-1}\right| \geq 2^{2}\left|x_{n-2}-y_{n-2}\right| \geq \cdots \geq 2^{n+1}\left|x_{0}-y_{0}\right| .
$$

Since x_{n}, y_{n} both lie in I_{0} or I_{1}, their distance apart is at most $1 / 4$. Thus

$$
\left|x_{0}-y_{0}\right| \leq 1 / 2^{n-1}
$$

This shows that any two points in $I_{\omega_{0}, \ldots, \omega_{n}}$ are at most $1 / 2^{n-1}$ apart. This proves the claim.
Clearly, $I_{\omega_{0}} \supset I_{\omega_{0}, \omega_{1}} \supset \cdots \supset I_{\omega_{0}, \ldots, \omega_{n}} \supset \cdots$, so we have a nested sequence of compact intervals so their intersection I_{ω} is non-empty.
Since the length of these intervals converges to $0, I_{\omega}$ contains a single point.
(c) Let $x \in \Lambda$. Then $x \in f^{-n}(I)$ for all $n \geq 0$. Therefore $f^{n}(x) \in I$ for all $n \geq 0$. On the other hand, if $f^{n}(x) \in I$ for all $n \geq 0$, then $x \in f^{-n}(I)$ for all $n \geq 0$, so $x \in \Lambda$.
(d) Assume that $x \in \Lambda$. Then $f(x) \in \Lambda$ by (c). The formula for $f(x)$ shows that if $x \notin I_{0} \cup I_{1}$, then $f(x)<0$ so $f(x) \notin \Lambda$. Hence $x \in \Lambda$ implies that $x \in I_{0} \cup I_{1}$. Since Λ is f-invariant, $f^{n}(x) \in I_{0} \cup I_{1}$ for all $n \geq 0$. Since I_{0}, I_{1} are disjoint, the itinerary map - $h(x)=\omega$ iff $f^{n}(x) \in I_{\omega_{n}}$ for all n - is well-defined.
(e) h is continuous: Let $\epsilon>0$ be given, and let $x \in \Lambda$. Let $\omega=h(x)$ and let $N>\log _{2} \epsilon^{-1}$.
From (b), if $|x-y|<2^{-N-1}$, and $y \in \Lambda$, then $y \in I_{\omega_{0}, \ldots, \omega_{N}}$ so x and y share the same itinerary up to the N-th iterate. Thus

$$
y \in \Lambda,|x-y|<2^{-N-1} \quad \Longrightarrow \quad d(h(x), h(y))<\epsilon
$$

h is 1-1: If $h(x)=\omega=h(y)$, then from (b), the distance between x and y is at most 2^{-n+1} for all $n \geq 0$. Hence $x=y$.
h is onto: From (b), I_{ω} is non-empty for all $\omega \in \Sigma^{\prime}$. Thus, there is an x s.t. $h(x)=\omega$.
(f) Any periodic point of f lies in Λ and our previous work shows that $f \mid \Lambda$ is conjugate to $\sigma \mid \Sigma^{\prime}$. Therefore, we can do all our calculations with the shift map.
We computed the answer for periods 2 and 3 in Q3. For period 6, we can write out all admissible length 6 words, and then pare this list down, as we did in the earlier examples. However, here is a better method.
Recall that a periodic point of period k for $\sigma \mid \Sigma^{\prime}$ corresponds to a closed path on the graph G of length k.

$$
G: \quad C_{1} \underset{\sim}{\rightleftharpoons}
$$

Let A be the adjacency matrix of G : that is $A_{i j}=1$ iff there is an oriented edge in G running from vertex i to vertex j.
Claim: The number of closed paths of length k in the graph G is $\operatorname{Trace}\left(A^{k}\right)$. Check: For $k=1$ this is true, as a closed path of length 1 is just a loop from vertex i to vertex i.
Let us suppose that $\left(i_{1}, i_{2}, \ldots, i_{k+1}\right)$ is a path of length k in the graph G , which means that we start at vertex i_{1}, proceed to i_{2}, etc. It follows that $A_{i_{s}, i_{s+1}}=1$ for all $s=1, \ldots, k$. On the other hand, if $A_{i_{s}, i_{s+1}}=1$ for all $s=1, \ldots, k$, then there is a path $\left(i_{1}, i_{2}, \ldots, i_{k+1}\right)$ is a path of length k in the graph G.
Observe that

$$
A_{a, b}^{k}=\sum_{i_{2}, i_{3} \cdots, i_{k}} A_{a, i_{2}} A_{i_{2}, i_{3}} \cdots A_{i_{k}, b} .
$$

Since $A_{a, i_{2}} A_{i_{2}, i_{3}} \cdots A_{i_{k}, b}$ is non-zero (whence 1) iff there is a path of length k in G from a to b, it follows that

$$
A_{a, b}^{k}=\{\text { length } k \text { paths in } \mathrm{G}, \text { from } a \text { to } b\} .
$$

The number of closed paths in G of length k is then $\sum_{a} A_{a, a}^{k}$ which is the trace of A^{k}. This proves the claim.

In our case

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

since one cannot be at 1 and stay at 1 . Then

$$
A^{2}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], A^{4}=\left[\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right], A^{6}=\left[\begin{array}{cc}
13 & * \\
* & 5
\end{array}\right]
$$

so there are $13+5=18$ period- 6 points.
Therefore there are $18-(4-1)-(3-1)-1=12$ prime period- 6 points.
Remark: The eigenvalues of A are $\lambda_{ \pm}=\frac{1 \pm \sqrt{5}}{2}$. So

$$
\operatorname{Trace}\left(A^{k}\right)=\lambda_{+}^{k}+\lambda_{-}^{k} \sim 1.6^{k}
$$

The number of periodic points therefore grows exponentially.
(Q8) Let $f(x)=4 x(1-x)$ and let $\Sigma=\{0,1\}^{\mathbb{N}}$. Prove that there is a continuous surjection h such that

commutes (σ is the shift map). Describe the set of points where h fails to be injective, i.e. the set of $\omega \in \Sigma$ where $h^{-1}(h(\omega))$ contains more than one point. [Hint: find intervals J_{0}, J_{1} with disjoint interiors such that $f\left(J_{i}\right)=I$ and $I=$ $J_{0} \cup J_{1}$. Try to define an itinerary map...]
Solution. Following the hint, let $J_{0}=[0, p]$ and $J_{1}=[p, 1]$ where $p=\frac{1}{2}$. It is clear these intervals satisfy the properties suggested in the hint. For a point $x \in I$ whose orbit does not contain p, the itinerary of x is unambiguously defined. If the orbit of x contains p at say the k-th step, then $f^{k}(x)=p, f^{k+1}(x)=f(p)=$ $1, f^{k+2}(x)=f(1)=0$ and then $f^{k+2+j}(0)=0$ for all $j \geq 0$. Thus, the itinerary of x is unambiguous except at the k-th step, where $f^{k}(x)=p$ lies in both J_{0} and J_{1}. In this case, the possible itineraries are:

$$
\omega_{0} \cdots \omega_{k-1} 0100 \cdots, \quad \text { or } \quad \omega_{0} \cdots \omega_{k-1} 1100 \cdots,
$$

where in both cases $\omega_{0} \cdots \omega_{k-1}$ is the same sequence determined by $f^{i}(x) \in J_{\omega_{i}}$ for $i=0, \ldots, k-1$.
We therefore see that every point $x \in I$ can be assigned at most 2 itineraries. Moreover, since $f\left(J_{i}\right)=J_{0} \cup J_{1}$, the IVT argument implies that for any itinerary $\omega \in \Sigma$, there is an $x \in I$ which has an itinerary ω.

At Examples Class 4 on Friday 3rd December the solution to Questions 3
and 7 will be discussed.

