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(Q1) Consider the set ¥ of sequences of two symbols 0,1, i.e., ¥ = {0,1}, with a
distance between sequences s = (sp, s1,52,+-+) € X and t = (tg,t1,t2,--) € &

defined by
s — i
d(s.t) => -
i=0

(a) Show that d defines a metric on X.
(b) Show that d(s,t) < 2.

Solution.

(a) Let n,w,& € ¥. We want to prove that
i d(n,w) >0 and d(n,w) =0 iff n = w;
ii. d(n,w) = d(w,n);
iil. d(n,§) < d(n,w) +d(w, ).
The first two properties are obvious. The third property, the triangle inequal-
ity, follows from the triangle inequality for real numbers: since |n; — &| <
i — wil + |w; — & for all 4, Z?io \m;&l < Efio \m;wl\ + Zzoio M{z&l' This
proves that d(n, &) < d(n,w) + d(w, §).
(b) For all n,£ € X, | — &| < 1 for all 4. Thus d(n,§) < > 227 =2.

(Q2) With the same definitions as in Question 1, let s, t and r be the periodic sequences

S:(171723171727171727"')7 t:(172717271727172>"')7 r:(2717271727172717"'

Calculate d(s, t), d(t,r) and d(r,s).

Solution. We see that s—t = (0, —1,1,-1,0,0,0,—1,1,—1,- - - ) which is periodic
of period 6. It follows that

N i 7 1 56
d(s,t) = > 27%(0/1+1/2+1/441/8+0/16 +0/32) = XT3 o
i=0

Since t —r = (—1,1,—1,1,---) we see that d(t,r) = 2.
Since s —r = (—1,0,0,0,—1,1,---) is periodic of period 6, we see that

oo

e 35 1 70
d(s,r) = 27%(1/1+0/240/4+0/8+1/16+1/32) = 5 T 5553

i=0

(Q3) Let X C ¥ = {0, 1}" be the set of all sequences s of two symbols 0, 1 with s;.1 =0
if s; =1 (i.e., the sequences in ¥’ do not have two consecutive 1’s).
(a) Confirm that the shift map o preserves X'.
(b) Show that periodic points are dense in X'.

(¢) Show that there is a dense orbit in X'.
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(d) How many fixed points of o are there in ¥'? How many period-2 and period-3
orbits?

Solution.

(a) Let n € ¥ so that if p; = 1, then n;4; = 0 for all j > 0. Therefore, if 9,1 =1,
then 7,45 = 0 for all j > 0. Since o(1); = 141, this shows that o(n) € ¥

(b) Let n € ¥ and € > 0 be given. We want to find a periodic point w € ¥’ of ¢
such that d(n,w) < e.
Let N > 0 be such that 27V < e. Let w; =, for i = 0,...,N. We would
like to then define w;;y+1 = w; for all i. However, we may have a problem if
nny = 1 and 1y, which would imply wy = 1 = wy.1, and so w would not be in
3. If this occurs, then increase N by 1. Since n € 3, this choice guarantees
that w € 3. It is clear that d(n,w) < € and w is a periodic point of o.

(c) Let us do the following: say that a “word” of length k is a sequence of zeroes
and ones of length k. A word is “admissible” if it satisfies the condition that
any 1 must be followed by a 0 (except if the 1 is the final letter of the word).
We can concatenate admissible words w; and w, as follows: if w; ends with
a 1 and ws begins with a 1, then we put a 0 between the words: w;0ws; in all
other cases, wiws is an admissible word. We will denote the concatenation
operation by wy - ws.

Since the set of admissible words of length k is finite, the set of all admissible
words is countable. Let wq,...,w,,... be an enumeration of all admissible
words. Let w = wy-wsq -+ -w, - -+ be the concatenation of all admissible words.
Since each 1 that appears in w is followed by a 0, w € 3.

Claim: The orbit of w is dense in X.

Check: Let n € ¥’ and let € > 0 be given. Let N > logye™! + 1. From
the definition of the metric d, we know that if n, = 7; for i = 0,..., N, then
d(n',m),e.

Let w = ng,m1, ..., ny. This is an admissible word of length N +1. Therefore,
w appears in w, or in other words w = wy - w - -+ where wy is an admissible
word of length K for some K (and there is no 0 padded between wy and w).
Therefore 0% (w) = w---. Thus

(" (w),n) < e
This prove that the orbit of w is dense.

(d) Observe that to find the periodic points of o|¥’, we can find the periodic

points of o that lie in ¥'. Observe also that each period-k periodic point of
0|’ corresponds to a unique admissible word w of length & such that ww is
also admissible (no 0 padding).
k = 1: (fixed point) Only 0 and 1 are admissible length-1 words and 00 is
admissible but 11 is not. Thus o|¥ has only one fixed point: w = (0,0,0,...).
k = 2: Only 00, 10, 01 are admissible length-2 words and each produces a
periodic point of o|¥'.
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k = 3: Only 000, 100, 010, 001 and 101 are admissible length-3 words. The
first four produce period-3 points for |’ but the fifth does not produce a
point in ¥ since 101101 is not admissible.

In total, there are: 1 fixed point, 3 period-2 points and 4 period-4 points.
There are 2 prime period-2 points and 3 prime period-3 points.

(Q4) Consider the one-sided shift map o acting on sequences of N symbols, i.e., acting
on Y ={1,2,-- N}

(a) How many fixed points of o* are there?

b) How many period-2 and period-4 orbits of ¢ are there in 37 How many prime
) y
period-2 and -4 orbits are there?

Solution.

(a) Each fixed point of o* corresponds uniquely to a word of length k in N
symbols, so there are N* fixed points.

(b) N? and N*. As there are N fixed points, there are N? — N prime period-2
points. Since a period-4 point which is not prime period-4 must also be a
period-2 point, there are N* — N2 prime period-4 points.

(Q5) Consider a one-dimensional mapping F'(x,) with m prime periodic orbit
X = (20,1, T2, ..., Tpye1)-

Show that the Liapunov exponent of an orbit attracted to this periodic orbit is

given by
1 m—1
A=—1 Fl(x;)].
m n g (T>

Thereby, show that A < 0.

Solution. Let yy have the orbit y; which converges to this periodic orbit. Possibly
after we have relabeled elements in the periodic orbit, we can assume that for each
U Yirkm — T; as k — oo. Then, assuming that F” is continuous at each point of
the periodic orbit, F'(yitrm) — F'(x;).

We know that

N
1
Alyo) = Jim = In|F'(y;)]
=0
N m-1

o ,

= Jlim o ; JZ:; I [F (Y4 k)|
1 N 1 m—1

Nim > - > | (ym)|

k=0 j=0

m—1

N
A In | (30|
1 — - In|F'(z: 17 \JyaRm/l
NLH;NZkZO m ijo nE @)l > = T @)
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Let € > 0 be given. Since yiikm — ; as k — oo, there is a K such that for all

E>K,1—e< % < 1+e€forall j. Now, since K is fixed relative to NV,

m—1

K m—1 N
o1& 1 1 )
Alyo) = lim_ i > o > I F (Yykm)| + v > = > I [F (g k)]
=0 " =0

k=K+1 = j=0

1 N 1 m—1
f— 1 . . / .
o I}T;o N Z m Zln|F (Yjrkem)]-
k=K+1 j=0
Thus
m—1 1 me1
1- — Y In|F'(z;)] < Ayo) < (1 2N F ()
( e)xm; n|F(z;)] < Ayo) < ( +e)xm; n|F/(x;)]

Since € > (0 was arbitrary, this proves the claim.

Since x is an attracting periodic orbit, |F'(x;)] < 1 for all 4. This proves that
Alyo) < 0.

(Q6) Find the Liapunov exponent of the logistic map F),(z) = px(1 — z) for x € [0,1]
where:

(a) 1<p<3
(Hint: You may assume that: (a) there exists at most one attracting period
orbit for the logistic map; and (b) the basin of attraction for this attracting
periodic orbit comprises the entire closed interval [0, 1] minus any repelling
fixed points).

(b) 3<p<1++6.

(Hint: use the result of Question 5).
Solution.

(a) 1<p<3
By Q1 of PS 1, there is a unique attracting fixed point z = 1 — 1/u in this
range. We have that Fj(z) = p — 2(—1+ p) = —p+ 2. By the hint and Q5,
the Lyapunov exponent of any o # 0 is In|2 — pl.

(b) 3<pu<1++6.
By Q1 of PS 1, there is a unique attracting period-2 orbit z;,x_. We have
that Fl(z4)FL(w-) = (u— (u+ 1+ v/a) x (- (u+ 1~ ya) = 1 - a where
a = (p—3)(n—1). By Q5, we have that the Lyapunov exponent of any
Yo #0,1—1/pis In|l —alz.

(Q7) Let f:1]0,1] — [0,1] be defined as follows
4o if0<a<1/4,
fl@)=q—(z-H(E—-2) if1/4<a<7/8,

8
2z — 7/8) if7/8 <z <.
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%, 1]. The aim of this exercise is to show that there is

i [
an invariant set A C [0, 1] and a homeomorphism h : A — X’ (see Q3) such that
hofI[A=0o0h.
(a) Show that IoU I} C f([()) and [y C f(]l)
(b) Show that if w € ¥/, then the set I, = {z € [0,1] : f"(x) € I, for all n} is
non-empty, and contains a single point.
(¢) Let A =nNy>of ([0, 1]). Show that if z € A iff f*(z) € [0,1] for all n > 0.
(d) Show that if € A, then x € Iy U I;. Conclude that f*(z) € A for all n > 0.
Hence show that the itinerary map h(z) = w is well-defined.
(e) Prove that h is continuous, 1-1 and onto.
(f) How many periodic orbits of period 2, 3 and 6 does f have?
Solution.
(a) Since f : z +— 4x on Iy, it I = [0,1] C f(Iy). Since f|I; is affine, with
f(7/8) =0and f(1) =1/4, f maps I, onto Iy.
Let us note that f|Ip and f|I; is a 1-1 map.
(b) Let w € ¥. Define I, o, ={x €1 : f¥x) e, for k=0,...,n}.

Claim: For all n > 0, and all w € ¥/, 1,
Check: For n = 0, this is trivially true. Assume that it is true for 0,...,n—1.
Now, by the induction hypothesis I, .., is a non-empty interval that is
contained in I, .

w, 1s a non-empty interval.

n

There are several possibilities to verify. If wy = 0, wy; = 0, then part (a) shows
that there is a unique interval in K C I, s.t. f(K) = L, ,. This interval
K is the sought after interval L., . w,-

The argument is similar for wy = 0,w; = 1 and wy = 1,w; = 0. However, the
argument fails when wy = 1 = w; — which is fortunate, because that cannot
occur when w € Y'!

Thus, we have proven the claim by induction.

Claim: For alln > 0, and all w € ¥/, I, has length < 1/2"71.
Check: The claim is true for n = 0. For n > 1, we observe that f/|IpUL; > 2.

k=0,...,n. The mean-value theorem says that
[Tn = gl > 2" @01 = Yna| > 22|20 0 — Yno| > - > 27 g — yo.
Since x,, y,, both lie in I or Iy, their distance apart is at most 1/4. Thus
7o — yo| < 1/2"7"

This shows that any two points in 1, are at most 1/2""! apart. This

proves the claim.

----- Wn

Clearly, Loy D lugw, D -+ D Lug,.w, D -+, 50 we have a nested sequence of
compact intervals so their intersection I, is non-empty.

Since the length of these intervals converges to 0, I, contains a single point.
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Let z € A. Then z € f~"([I) for all n > 0. Therefore f"(x) € I for all n > 0.
On the other hand, if f"(z) € I for all n > 0, then x € f~™(I) for all n > 0,
sox €A

Assume that # € A. Then f(z) € A by (c¢). The formula for f(z) shows that
if o ¢ IyUI,, then f(z) < 0so f(z) ¢ A. Hence z € A implies that z € IyUI;.
Since A is f-invariant, f"(z) € Iy U I; for all n > 0. Since Iy, I; are disjoint,
the itinerary map — h(z) = w iff f*(z) € I,,, for all n — is well-defined.

h is continuous: Let € > 0 be given, and let © € A. Let w = h(z) and let
N > log, e L.

From (b), if [+ —y| <27V 1 and y € A, then y € I,
the same itinerary up to the N-th iterate. Thus

~ S0  and y share

yelle—yl <2V = dh(2).h(y)) <.

his 1-1: If h(z) = w = h(y), then from (b), the distance between z and y is
at most 27! for all n > 0. Hence x = y.

h is onto: From (b), I, is non-empty for all w € ¥'. Thus, there is an x s.t.
hz) = w.

Any periodic point of f lies in A and our previous work shows that f|A is
conjugate to o|X'. Therefore, we can do all our calculations with the shift
map.

We computed the answer for periods 2 and 3 in Q3. For period 6, we can
write out all admissible length 6 words, and then pare this list down, as we
did in the earlier examples. However, here is a better method.

Recall that a periodic point of period k for o|X’ corresponds to a closed path
on the graph G of length k.

G: Co_—1

Let A be the adjacency matrix of G: that is A;; = 1 iff there is an oriented
edge in G running from vertex ¢ to vertex j.
Claim: The number of closed paths of length & in the graph G is Trace(A¥).
Check: For k =1 this is true, as a closed path of length 1 is just a loop from
vertex ¢ to vertex .
Let us suppose that (i1,1s,...,ik11) is a path of length & in the graph G,
which means that we start at vertex i, proceed to iy, etc. It follows that
A i, = Lforal s =1,...,k On the other hand, if A; ;,, = 1 for all
s=1,...,k, then there is a path (i1,i2,...,4+1) is a path of length % in the
graph G.
Observe that

A];,b = Z Agis Ay - Aig b

12,13 ik

Since Ag i, Aiy iy - - - Aiyp is non-zero (whence 1) iff there is a path of length k
in G from a to b, it follows that

Al = {length k paths in G, from a to b}.
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The number of closed paths in G of length k is then Y, A% . which is the
trace of A*. This proves the claim.

11
=1o]

since one cannot be at 1 and stay at 1. Then

s [2 1] 4 [53] 46 [13 «
o[- l5 ]3]

so there are 13 4+ 5 = 18 period-6 points.
Therefore there are 18 — (4 — 1) — (3 — 1) — 1 = 12 prime period-6 points.

Remark: The eigenvalues of A are Ay = %—‘/5 So

In our case

k k k k
Trace(A”) = A] + AL ~ 1.6%.
The number of periodic points therefore grows exponentially.

(Q8) Let f(v) = 4x(1 — ) and let ¥ = {0,1}". Prove that there is a continuous
surjection h such that
L—">%
ho ok

I—1

commutes (o is the shift map). Describe the set of points where h fails to be
injective, i.e. the set of w € 3 where h~!(h(w)) contains more than one point.
[Hint: find intervals Jy, J; with disjoint interiors such that f(J;) = I and I =
Jo U Ji. Try to define an itinerary map...]

Solution. Following the hint, let Jo = [0,p] and J; = [p,1] where p = 5. It is
clear these intervals satisfy the properties suggested in the hint. For a point = € I
whose orbit does not contain p, the itinerary of x is unambiguously defined. If
the orbit of z contains p at say the k-th step, then f*(z) = p, f**(x) = f(p) =
1, f*+2(2) = f(1) = 0 and then f*+>¥7(0) = 0 for all j > 0. Thus, the itinerary of
¥ is unambiguous except at the k-th step, where f*(z) = p lies in both Jy and J;.
In this case, the possible itineraries are:

wo -+ wr—10100- -+, or W+ wr—11100- -+,
where in both cases wp - - - wg_; is the same sequence determined by f*(z) € J,, for
1=0,...,k—1.

We therefore see that every point x € I can be assigned at most 2 itineraries.
Moreover, since f(J;) = Jo U Ji, the IVT argument implies that for any itinerary
w € ¥, there is an x € [ which has an itinerary w.

At Examples Class 4 on Friday 3rd December the solution to Questions 3
and 7 will be discussed.



