Dynamical Systems (MATH11027)
(Q1) Consider the \mathbb{R}^{1} map with fixed point $x^{*}=\alpha$ represented by the Taylor series

$$
x_{n+1}=F\left(x_{n}\right)=\alpha+\beta_{1}(x-\alpha)+\beta_{2}(x-\alpha)^{2}+\beta_{3}(x-\alpha)^{3}+\beta_{4}(x-\alpha)^{4}+\cdots
$$

where $\beta_{1,2,3,4, \ldots}$ are constants. Let $G(x)=F(x+\alpha)-\alpha$. Show that G has a fixed point at the origin and

$$
D_{s}\{F\}(\alpha)=D_{s}\{G\}(0)
$$

Solution.

We have that $G(0)=F(\alpha)-\alpha=0$ since F fixes α. The chain implies that $G^{(k)}(x)=F^{(k)}(x+\alpha)$ for all $k \geq 1$. This implies that $D_{s}\{G\}(x)=D_{s}\{F\}(x+\alpha)$ for all x, which proves the claim.
(Q2) Consider the system $x_{n+1}=F_{\mu}\left(x_{n}\right)$, with $F_{\mu}\left(x_{n}\right)=\mu+x_{n}^{2}$ where $x_{n}, \mu \in \mathbb{R}$.
(a) Find the fixed points of the system in terms of μ.
(b) Find the value of x, and the corresponding value of the parameter μ, at which there is a saddle-node bifurcation.
(c) Find the value of x, and the corresponding value of the parameter μ, at which there is a flip bifurcation. Is it super- or subcritical?

Solution. See the solution to Q1 in assignment 3.
(Q3) Let $I=[a, b]$ be a closed interval and $F: I \rightarrow I$ be a continuous function. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).

Solution.

Let $f(x)=F(x)-x$. Since F maps I into itself, $F(a) \geq a$ and $F(b) \leq b$. Thus $f(a) \geq 0$ and $f(b) \leq 0$. Since f is continuous, the intermediate value theorem says that there is an $\eta \in[a, b]$ such that $f(\eta)=0$. Thus $F(\eta)=\eta$.
(Q4) Let $I=[a, b]$ be a closed interval and F be a continuous function such that $F(I) \supset$ I. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).
Solution.
Since $F(I) \supset I$, we have that either $F(a)<a$ and $F(b)>b$ or $F(a)>b$ and $F(b)<a$. In the both cases, the intermediate value theorem can be applied as in Q3 to show the claim.
(Q5) Show that if the mapping $x_{n+1}=F\left(x_{n}\right)$ with $F(x)$ continuous has a period- 2 orbit, then it also has a fixed point. (Hint: Intermediate Value Theorem).
Solution. Let $\{a, b\}$ be the period-2 orbit with $a<b$. Then $F(a)=b$ and $F(b)=a$. The intermediate theorem implies that $F(I) \supset I$ where $I=[a, b]$. [Check: let $a<y<b$. Then $F(a)>y$ and $F(b)<y$. Therefore there is an $x \in(a, b)$ s.t. $F(x)=y$.] Now apply Q4.
(Q6) Let $F: I \rightarrow I$ be a continuous map of $I=[0,1]$. Show that if F has a prime period-3 orbit, then F has a fixed point and a prime period-2 point. This completes the proof of the simple Sharkovskii theorem.

Solution. Assume that the orbit is $\{a, b, c\}$ with $a<b<c$ and $F(a)=b, F(b)=$ $c, F(c)=a$. F maps the intervals $J_{0}=[a, b]$ and $J_{1}=[b, c]$ by $J_{1} \subset F\left(J_{0}\right)$ and $J_{0} \cup J_{1} \subset F\left(J_{1}\right)$. Therefore, $J_{1} \subset F\left(J_{1}\right)$ so F has a fixed point in J_{1}. On the other hand, we showed that there are intervals $K_{1} \subset J_{0}$ and $K_{0} \subset J_{1}$ such that

$$
F\left(K_{0}\right)=K_{1}, \quad F\left(K_{1}\right)=K_{2}=J_{1}, \quad K_{0} \subset F\left(K_{2}\right)
$$

Therefore $K_{0} \subset F^{2}\left(K_{0}\right)$ so F^{2} has a fixed point x in K_{0}. Since $x \in J_{1}, F(x) \in J_{0}$ and $x=F^{2}(x) \in J_{1}$, we see that if x were a fixed point then $x \in J_{0} \cap J_{1}=\{b\}$. Since b is not fixed, this proves that x is a prime period- 2 point.
(Q7) Show that the mapping $x_{n+1}=F\left(x_{n}\right)$
(a) has no prime period- k orbits for $k \geq 2$ if $F^{\prime}(x)>0$;
(b) has a unique fixed point and no prime period- k orbits for $k \geq 3$ if $F^{\prime}(x)<0$. (Hint: consider the ordering of the x_{j} in a periodic orbit $\left(x_{0}, x_{1}, \cdots, x_{k-1}\right)$; for $F^{\prime}(x)<0$, consider the sign of the derivative of $F^{k}(x)$.)
Solution. N.B.: The question must say prime period. It is false without this specification.
(a) Assume that $\left\{x_{j}\right\}$ is a prime period $-k \geq 2$ orbit, where x_{0} is the smallest point on the orbit and $x_{j}=F^{j}\left(x_{0}\right)$. We see that $x_{0}<x_{1}$ or $x_{1}<x_{0}$. In the former case, since F is increasing $x_{j}=F^{j}\left(x_{0}\right)<F^{j}\left(x_{1}\right)=x_{j+1}$ for all j, and so $x_{0}<x_{1}<\ldots<x_{k-1}<x_{k}$ But $x_{k}=x_{0}$. Absurd. The argument when $x_{1}<x_{0}$ is similar.
(b) F has a fixed point: because $F(x)-x \rightarrow-\infty$ as $x \rightarrow \infty$ (since F is decreasing so $F(x) \leq F(0)$ for $x \geq 0$) and $F(x)-x \rightarrow+\infty$ as $x \rightarrow-\infty$ (since F is decreasing $F(x) \geq F(0)$ for $x \leq 0)$. The intermediate value theorem implies that $F(x)-x$ must vanish.
Assume that F has a prime period- k orbit with $k \geq 3$. Let $\left\{x_{j}\right\}$ be a prime period- $k \geq 3$ orbit, where x_{0} is the smallest point on the orbit and $x_{j}=$ $F^{j}\left(x_{0}\right)$. Observe that F^{2} is increasing. Since the orbit has prime period $k \geq 3$, either $x_{0}>x_{2}$ or $x_{0}<x_{2}$. In the first case, since F^{2} is increasing $x_{2}=$ $F^{2}\left(x_{0}\right)<F^{2}\left(x_{2}\right)=x_{4}$ and more generally, $x_{0}<x_{2}<x_{4}<\cdots<x_{2 n}<\cdots$. This contradicts the fact that the set $\left\{x_{2 j}\right\}$ is finite (since the periodic orbit is finite). The case $x_{0}>x_{2}$ is similar. This proves the claim.
(Q8) Consider the \mathbb{R}^{1} family of mappings

$$
x_{n+1}=G_{\mu}\left(x_{n}\right)=\mu x_{n}\left(1-x_{n}^{4}\right) \quad(\mu>0) .
$$

(a) Find the fixed point of this mapping with $x>0$. For which range of values of μ does it exist?
(b) Find the value of μ for which the fixed point with $x>0$ undergoes a flip bifurcation and discuss its nature.
(c) The mapping undergoes a sequence of period-doubling bifurcations as μ increases. Describe briefly this phenomenon.
(d) Describe the nature of all period-doubling bifurcations of this mapping.

Solution.

(a) We wish to find those x solving $x=G_{\mu}(x)$, that is,

$$
\begin{array}{ll}
x=\mu x\left(1-x^{4}\right) & \text { so } \\
x= \pm i\left(1-\frac{1}{\mu}\right)^{\frac{1}{4}}, \text { or } & x= \pm\left(1-\frac{1}{\mu}\right)^{\frac{1}{4}} \quad \text { or } \quad x=0 . \tag{0.1}
\end{array}
$$

We see that $x=0$ is real for all μ and $x_{ \pm}= \pm\left(1-\frac{1}{\mu}\right)^{\frac{1}{4}}$ is real for $\mu \geq 1$ and $x_{+}>0$ for $\mu>1$.
(b) We compute that $G_{\mu}^{\prime}=-5 \mu x^{4}+\mu$, so the derivative of G_{μ} at the fixed point x_{+}is equal to

$$
\begin{equation*}
-4 \mu+5 \tag{0.2}
\end{equation*}
$$

In order to have a flip bifurcation, we need $G_{\mu}^{\prime}\left(x_{+}\right)=-1$, so $\mu=3 / 2$ and $x_{+}=\frac{1}{3^{\frac{1}{4}}}$.
To determine the nature of the flip bifurcation, we compute the Schwartzian derivative,

$$
\begin{align*}
D\left\{G_{\mu}\right\}(x) & =\frac{G_{\mu}^{\prime \prime \prime}(x)}{G_{\mu}^{\prime}(x)}-\frac{3\left(G_{\mu}^{\prime \prime}(x)\right)^{2}}{2\left(G_{\mu}^{\prime}(x)\right)^{2}} \\
& =-\frac{300 x^{6}+60 x^{2}}{25 x^{8}-10 x^{4}+1} \\
& =-\frac{300 x^{6}+60 x^{2}}{\left(5 x^{4}-1\right)^{2}} \tag{0.3}
\end{align*}
$$

Since the denominator is positive everywhere except at $x= \pm 1 / \sqrt[4]{5}$, we conclude that $D\left\{G_{\mu}\right\}\left(x_{+}\right)<0$. Therefore, the bifurcation is a supercritical flip bifurcation.
(c-d) Since $D\left\{G_{\mu}\right\}(x)<0$ for $x \neq \pm 1 / \sqrt[4]{5}$, we see that $D\left\{G_{\mu}^{n}\right\}(x)<0$ for all $x \neq \pm 1 / \sqrt[4]{5}$ and all n. This implies that all period-doubling bifurcations are supercritical, so a stable period 2^{n} periodic orbit becomes unstable and gives birth to a nearby period 2^{n+1} stable orbit. See figure 0.1.
(Q9) Consider the \mathbb{R}^{1} mapping

$$
x_{n+1}=F_{\mu}\left(x_{n}\right) \quad \text { with } \quad F_{\mu}(x)=\mu x-x^{3} \quad \text { and } \mu>0 .
$$

(a) Find the fixed points of the mapping F_{μ}.
(b) Discuss the existence and stability of the fixed points in terms of μ, and thereby show that the mapping undergoes bifurcations for $\mu=1$ and $\mu=2$.
(c) Describe the bifurcation which arises at $\mu=1$. Sketch the fixed points of F_{μ} on a (μ, x) bifurcation diagram for $0<\mu<3$. Indicate stability on your sketch.

Figure 0.1: Period-doubling for the map G_{μ}. The right-hand limit is $\mu=5^{5 / 4} / 4$, the parameter value beyond which G_{μ} no longer maps $[0,1]$ into $[0,1]$.
(d) Determine whether the flip bifurcations at $\mu=2$ are supercritical or subcritical by computing the Schwarzian derivative of F_{μ}. What are the implications of this result for period doubling?
(e) Consider the perturbed mapping

$$
F_{\mu, \delta}(x)=\mu x-x^{3}+\delta
$$

such that $F_{\mu, 0}(x)=F_{\mu}(x)$. For a fixed, small value of $\delta>0$, sketch on a (μ, x) diagram the position of the fixed points of $F_{\mu, \delta}$.
(Hint: To sketch the position of the fixed points $x(\mu)$, it is convenient to consider the graph of the inverse relationship $\mu(x)$ and use reflection about the line $x=\mu$ to deduce the curves $x(\mu)$; there is then no need to solve the cubic equation for the fixed points explicitly).
(f) Show that the mapping $F_{\mu, \delta}$ undergoes a bifurcation for $\mu=1+3(\delta / 2)^{2 / 3}$. What is the nature of this bifurcation?

Solution.

(a) We solve $x=F_{\mu}(x)$ to find that $x=0$ or $1=\mu-x^{2}$ so $x= \pm \sqrt{\mu-1}$, for $\mu \geq 1$.
(b) Since $F_{\mu}^{\prime}(0)=\mu$, at $\mu=1$, the fixed point $x=0$ goes from stable to unstable and bifurcates into a pair of stable fixed points at $x_{ \pm}= \pm \sqrt{\mu-1}$. At $\mu=2$, $F_{\mu}^{\prime}\left(x_{ \pm}\right)=-1$, so these fixed points undergo a flip bifurcation at $\mu=2$.
(c) See figure 0.2.

Figure 0.2: Bifurcation diagram for the map F_{μ}. The bifurcation at $\mu=1$ is called a pitchfork bifurcation. Several pitchfork bifurcations are shown in (b).
(d) We compute the Schwartzian derivative of F_{μ} is

$$
\begin{equation*}
D\left\{F_{\mu}\right\}(x)=-\frac{6\left(6 x^{2}+\mu\right)}{\left(3 x^{2}-\mu\right)^{2}} \tag{0.4}
\end{equation*}
$$

which is <0 for all $\mu>0$ and all x. It follows that the flip bifurcation at $\mu=2$ is supercritial, as are all subsequent period-doubling bifurcations (see 0.2).
(e) See figure 0.3.
(f) The fixed points of $F_{\mu, \delta}$ satisfy

$$
\begin{equation*}
x=F_{\mu, \delta}(x)=\mu x-x^{3}+\delta \quad \Longrightarrow \mu=\frac{x^{3}+x-\delta}{x} . \tag{0.5}
\end{equation*}
$$

This describes μ as a function of the fixed point x. One computes that

$$
\begin{equation*}
F_{\mu, \delta}^{\prime}(x)=\mu-3 x^{2} \quad \text { which equals } 1 \text { when } \mu=1+3 x^{2} \tag{0.6}
\end{equation*}
$$

When we equate (0.5) and (0.6), we find that the only real solution is $x=$ $-\left(\frac{\delta}{2}\right)^{\frac{1}{3}}$ whence $\mu=3\left(\frac{\delta}{2}\right)^{\frac{2}{3}}+1$, as required.
We note that this is a 'blue-sky' or saddle-node bifurcation that takes place. Note though, that this is 'global', too, because the other fixed point has changed stability (its derivative passes through -1 , in analogy with the pitchfork bifurcation above).
(Q10) Prove the following theorem:
Theorem.[Saddle-Node Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^{3} in both variables. Assume that there is a μ_{c}, x_{c} such that

Figure 0.3: Bifurcation diagram for the map $F_{\mu, \delta}$ with $\delta=1 / 10$. At approximately $\mu=1.4$, the fixed point $x \simeq 0.74$ becomes unstable and a pair of stable fixed points appear (lower right). This graph looks like the pitchfork above, where the two tines have been slid off the central one.
(a) $x_{c}=f_{\mu_{c}}\left(x_{c}\right)$;
(b) $a=f_{\mu_{c}}^{\prime \prime}\left(x_{c}\right) \neq 0$;
(c) $b=\left.\frac{\partial f_{\mu}}{\partial \mu}\right|_{x=x_{c}, \mu=\mu_{c}} \neq 0$;
(d) $f_{\mu_{c}}^{\prime}\left(x_{c}\right)=1$.

Then there exists a C^{2} function $\mu=\mu(x)$ such that
(i) $\mu\left(x_{c}\right)=\mu_{c}$;
(ii) $f_{\mu(x)}(x)=x$ for all x near x_{c}; and
(iii) $\mu(x)=\mu_{c}-\frac{a}{2 b}\left(x-x_{c}\right)^{2}+O\left(\left|x-x_{c}\right|^{3}\right)$.

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu=\mu_{c}$ and f_{μ} has fixed points $x_{ \pm}(\mu)=x_{c} \pm \sqrt{\frac{-2 b\left(\mu-\mu_{c}\right)}{a}}+O\left(\left|\mu-\mu_{c}\right|\right)$. [Hint: use the implicit function theorem.]

Compare the statement of the SNB Theorem and Q2.
Solution. We will use the hint supplied. Let us define

$$
\begin{equation*}
g(x, \mu)=f_{\mu}(x)-x \tag{0.7}
\end{equation*}
$$

which is C^{3} in both variables. The hypotheses imply

$$
\begin{equation*}
g\left(x_{c}, \mu_{c}\right)=\left.0 \quad \frac{\partial g}{\partial x}\right|_{x_{c}, \mu_{c}}=0,\left.\quad \frac{\partial g}{\partial \mu}\right|_{x_{c}, \mu_{c}}=a \neq 0 \tag{0.8}
\end{equation*}
$$

The final fact allows us to use the implicit function theorem. This implies that there is a C^{3} function $\mu=\mu(x)$ that is defined in an interval J containing x_{c}, with $\mu\left(x_{c}\right)=\mu_{c}$, such that

$$
\begin{equation*}
g(x, \mu(x))=0 \quad \forall x \in J \tag{0.9}
\end{equation*}
$$

Applying implicit differentation to (0.9), we get

$$
\begin{align*}
0 & =\frac{\partial}{\partial x} g(x, \mu(x))=f_{\mu}^{\prime}(x)-1+\frac{\partial g}{\partial \mu} \cdot \mu^{\prime}(x) \\
\mu^{\prime}\left(x_{c}\right) & =0 \tag{0.10}
\end{align*}
$$

SO
and

$$
\begin{align*}
0 & =\frac{\partial^{2}}{\partial x^{2}} g(x, \mu(x))=f_{\mu}^{\prime \prime}(x)+\frac{\partial^{2} g}{\partial x \partial \mu} \cdot \mu^{\prime}(x)+\frac{\partial g}{\partial x} \cdot \mu^{\prime \prime}(x) \quad \text { so } \\
\mu^{\prime \prime}\left(x_{c}\right) & =-\frac{a}{b} \tag{0.11}
\end{align*}
$$

Taylor's theorem implies that $\mu(x)=\mu\left(x_{c}\right)+\mu^{\prime}\left(x_{c}\right)\left(x-x_{c}\right)+\frac{1}{2} \mu^{\prime \prime}\left(x_{c}\right)\left(x-x_{c}\right)^{2}+$ $O\left(\left|x-x_{c}\right|^{3}\right)$. Thus

$$
\begin{align*}
\mu(x) & =\mu_{c}-\frac{a}{2 b}\left(x-x_{c}\right)^{2}+O\left(\left|x-x_{c}\right|^{3}\right) \tag{0.12}\\
x & =x_{c} \pm \sqrt{\frac{-2 b\left(\mu-\mu_{c}\right)}{a}}+O\left(\left|\mu-\mu_{c}\right|\right) \tag{0.13}
\end{align*}
$$

(Q11) Prove the following theorem:
Theorem.[Period-Doubling/Flip Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^{4} in both variables. Assume that there is a μ_{c} such that
(a) $0=f_{\mu}(0)$ for all μ near μ_{c};
(b) $f_{\mu_{c}}^{\prime}(0)=-1$;
(c) $a=f_{\mu_{c}}^{\prime \prime \prime}(0) \neq 0$; and
(d) $b=\left.\frac{\partial\left(f_{\mu}^{2}\right)^{\prime}}{\partial \mu}\right|_{x=0, \mu=\mu_{c}} \neq 0 ;$
(e) $f_{\mu_{c}}^{\prime}\left(x_{c}\right)=1$.

Then there exists a C^{4} function $\mu=\mu(x)$ defined near $x=0$ such that
(i) $\mu(0)=\mu_{c}$;
(ii) $f_{\mu(x)}(x) \neq x, f_{\mu(x)}^{2}(x)=x$ for all $x \neq 0$ near 0 ; and
(iii) $\mu(x)=\mu_{c}-\frac{a}{2 b}\left(x-x_{c}\right)^{2}+O\left(\left|x-x_{c}\right|^{3}\right)$.

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu=\mu_{c}$ and f_{μ} has fixed points $x_{ \pm}(\mu)= \pm \sqrt{\frac{-2 b\left(\mu-\mu_{c}\right)}{a}}+O\left(\left|\mu-\mu_{c}\right|\right)$.

Hint: use the implicit function theorem for the function

$$
H(x, \mu)= \begin{cases}\frac{f_{\mu}^{2}(x)-x}{x} & \text { if } x \neq 0 \\ \left(f_{\mu}^{2}\right)^{\prime}(0) & \text { if } x=0\end{cases}
$$

Compare the statement of the above Theorem, Q9e and our work in class.

