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(Q1) Consider the R
1 map with fixed point x∗ = α represented by the Taylor series

xn+1 = F (xn) = α + β1 (x− α) + β2 (x− α)2 + β3 (x− α)3 + β4 (x− α)4 + · · ·

where β1,2,3,4,... are constants. Let G(x) = F (x+ α)− α. Show that G has a fixed
point at the origin and

Ds{F}(α) = Ds{G}(0).

Solution.

We have that G(0) = F (α) − α = 0 since F fixes α. The chain implies that
G(k)(x) = F (k)(x+ α) for all k ≥ 1. This implies that Ds{G}(x) = Ds{F}(x+ α)
for all x, which proves the claim.

(Q2) Consider the system xn+1 = Fµ(xn), with Fµ(xn) = µ+ x2
n where xn, µ ∈ R.

(a) Find the fixed points of the system in terms of µ.

(b) Find the value of x, and the corresponding value of the parameter µ, at which
there is a saddle-node bifurcation.

(c) Find the value of x, and the corresponding value of the parameter µ, at which
there is a flip bifurcation. Is it super- or subcritical?

Solution. See the solution to Q1 in assignment 3.

(Q3) Let I = [a, b] be a closed interval and F : I → I be a continuous function. Show
that F has a fixed point in I. (Hint: Intermediate Value Theorem).

Solution.

Let f(x) = F (x) − x. Since F maps I into itself, F (a) ≥ a and F (b) ≤ b. Thus
f(a) ≥ 0 and f(b) ≤ 0. Since f is continuous, the intermediate value theorem says
that there is an η ∈ [a, b] such that f(η) = 0. Thus F (η) = η.

(Q4) Let I = [a, b] be a closed interval and F be a continuous function such that F (I) ⊃
I. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).

Solution.

Since F (I) ⊃ I, we have that either F (a) < a and F (b) > b or F (a) > b and
F (b) < a. In the both cases, the intermediate value theorem can be applied as in
Q3 to show the claim.

(Q5) Show that if the mapping xn+1 = F (xn) with F (x) continuous has a period-2 orbit,
then it also has a fixed point. (Hint: Intermediate Value Theorem).

Solution. Let {a, b} be the period-2 orbit with a < b. Then F (a) = b and
F (b) = a. The intermediate theorem implies that F (I) ⊃ I where I = [a, b].
[Check: let a < y < b. Then F (a) > y and F (b) < y. Therefore there is an
x ∈ (a, b) s.t. F (x) = y.] Now apply Q4.

(Q6) Let F : I → I be a continuous map of I = [0, 1]. Show that if F has a prime
period-3 orbit, then F has a fixed point and a prime period-2 point. This completes
the proof of the simple Sharkovskii theorem.
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Solution. Assume that the orbit is {a, b, c} with a < b < c and F (a) = b, F (b) =
c, F (c) = a. F maps the intervals J0 = [a, b] and J1 = [b, c] by J1 ⊂ F (J0) and
J0∪J1 ⊂ F (J1). Therefore, J1 ⊂ F (J1) so F has a fixed point in J1. On the other
hand, we showed that there are intervals K1 ⊂ J0 and K0 ⊂ J1 such that

F (K0) = K1, F (K1) = K2 = J1, K0 ⊂ F (K2).

Therefore K0 ⊂ F 2(K0) so F 2 has a fixed point x in K0. Since x ∈ J1, F (x) ∈ J0
and x = F 2(x) ∈ J1, we see that if x were a fixed point then x ∈ J0 ∩ J1 = {b}.
Since b is not fixed, this proves that x is a prime period-2 point.

(Q7) Show that the mapping xn+1 = F (xn)
(a) has no prime period-k orbits for k ≥ 2 if F ′(x) > 0;

(b) has a unique fixed point and no prime period-k orbits for k ≥ 3 if F ′(x) < 0.
(Hint: consider the ordering of the xj in a periodic orbit (x0, x1, · · · , xk−1); for
F ′(x) < 0, consider the sign of the derivative of F k(x).)

Solution. N.B.: The question must say prime period. It is false without this
specification.

(a) Assume that {xj} is a prime period-k ≥ 2 orbit, where x0 is the smallest
point on the orbit and xj = F j(x0). We see that x0 < x1 or x1 < x0. In the
former case, since F is increasing xj = F j(x0) < F j(x1) = xj+1 for all j, and
so x0 < x1 < . . . < xk−1 < xk But xk = x0. Absurd. The argument when
x1 < x0 is similar.

(b) F has a fixed point: because F (x)−x → −∞ as x → ∞ (since F is decreasing
so F (x) ≤ F (0) for x ≥ 0) and F (x) − x → +∞ as x → −∞ (since F is
decreasing F (x) ≥ F (0) for x ≤ 0). The intermediate value theorem implies
that F (x)− x must vanish.

Assume that F has a prime period-k orbit with k ≥ 3. Let {xj} be a prime
period-k ≥ 3 orbit, where x0 is the smallest point on the orbit and xj =
F j(x0). Observe that F 2 is increasing. Since the orbit has prime period
k ≥ 3, either x0 > x2 or x0 < x2. In the first case, since F 2 is increasing x2 =
F 2(x0) < F 2(x2) = x4 and more generally, x0 < x2 < x4 < · · · < x2n < · · · .
This contradicts the fact that the set {x2j} is finite (since the periodic orbit
is finite). The case x0 > x2 is similar. This proves the claim.

(Q8) Consider the R
1 family of mappings

xn+1 = Gµ(xn) = µxn

(

1− x4
n

)

(µ > 0).

(a) Find the fixed point of this mapping with x > 0. For which range of values
of µ does it exist?

(b) Find the value of µ for which the fixed point with x > 0 undergoes a flip
bifurcation and discuss its nature.

(c) The mapping undergoes a sequence of period–doubling bifurcations as µ in-
creases. Describe briefly this phenomenon.

(d) Describe the nature of all period–doubling bifurcations of this mapping.
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Solution.

(a) We wish to find those x solving x = Gµ(x), that is,

x = µx(1− x4) so

x = ±i

(

1− 1

µ

)
1

4

, or x = ±
(

1− 1

µ

)
1

4

or x = 0. (0.1)

We see that x = 0 is real for all µ and x± = ±
(

1− 1
µ

)
1

4

is real for µ ≥ 1 and

x+ > 0 for µ > 1.

(b) We compute that G′

µ = −5µx4 + µ, so the derivative of Gµ at the fixed point
x+ is equal to

− 4µ+ 5. (0.2)

In order to have a flip bifurcation, we need G′

µ(x+) = −1, so µ = 3/2 and
x+ = 1

3
1
4

.

To determine the nature of the flip bifurcation, we compute the Schwartzian
derivative,

D {Gµ}(x) =
G′′′

µ (x)

G′
µ(x)

−
3
(

G′′

µ(x)
)2

2
(

G′
µ(x)

)2

= − 300x6 + 60x2

25x8 − 10x4 + 1

= −300x6 + 60x2

(5x4 − 1)2
. (0.3)

Since the denominator is positive everywhere except at x = ±1/ 4
√
5, we con-

clude that D {Gµ}(x+) < 0. Therefore, the bifurcation is a supercritical flip
bifurcation.

(c–d) Since D {Gµ}(x) < 0 for x 6= ±1/ 4
√
5, we see that D

{

Gn
µ

}

(x) < 0 for all

x 6= ±1/ 4
√
5 and all n. This implies that all period-doubling bifurcations are

supercritical, so a stable period 2n periodic orbit becomes unstable and gives
birth to a nearby period 2n+1 stable orbit. See figure 0.1.

(Q9) Consider the R
1 mapping

xn+1 = Fµ(xn) with Fµ(x) = µx− x3 and µ > 0.

(a) Find the fixed points of the mapping Fµ.

(b) Discuss the existence and stability of the fixed points in terms of µ, and
thereby show that the mapping undergoes bifurcations for µ = 1 and µ = 2.

(c) Describe the bifurcation which arises at µ = 1. Sketch the fixed points of
Fµ on a (µ, x) bifurcation diagram for 0 < µ < 3. Indicate stability on your
sketch.
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Figure 0.1: Period-doubling for the map Gµ. The right-hand limit is µ = 55/4/4, the
parameter value beyond which Gµ no longer maps [0, 1] into [0, 1].

(d) Determine whether the flip bifurcations at µ = 2 are supercritical or subcriti-
cal by computing the Schwarzian derivative of Fµ. What are the implications
of this result for period doubling?

(e) Consider the perturbed mapping

Fµ,δ(x) = µx− x3 + δ

such that Fµ,0(x) = Fµ(x). For a fixed, small value of δ > 0, sketch on a
(µ, x) diagram the position of the fixed points of Fµ,δ.
(Hint: To sketch the position of the fixed points x(µ), it is convenient to
consider the graph of the inverse relationship µ(x) and use reflection about
the line x = µ to deduce the curves x(µ); there is then no need to solve the
cubic equation for the fixed points explicitly).

(f) Show that the mapping Fµ,δ undergoes a bifurcation for µ = 1 + 3(δ/2)2/3.
What is the nature of this bifurcation?

Solution.

(a) We solve x = Fµ(x) to find that x = 0 or 1 = µ − x2 so x = ±√
µ− 1, for

µ ≥ 1.

(b) Since F ′

µ(0) = µ, at µ = 1, the fixed point x = 0 goes from stable to unstable
and bifurcates into a pair of stable fixed points at x± = ±√

µ− 1. At µ = 2,
F ′

µ(x±) = −1, so these fixed points undergo a flip bifurcation at µ = 2.

(c) See figure 0.2.
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(a) µ ∈ (1, 3)
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(b) µ ∈ (−2, 4)

Figure 0.2: Bifurcation diagram for the map Fµ. The bifurcation at µ = 1 is called a
pitchfork bifurcation. Several pitchfork bifurcations are shown in (b).

(d) We compute the Schwartzian derivative of Fµ is

D {Fµ}(x) = −6 (6x2 + µ)

(3x2 − µ)2
(0.4)

which is < 0 for all µ > 0 and all x. It follows that the flip bifurcation at
µ = 2 is supercritial, as are all subsequent period-doubling bifurcations (see
0.2).

(e) See figure 0.3.

(f) The fixed points of Fµ,δ satisfy

x = Fµ,δ(x) = µx− x3 + δ =⇒ µ =
x3 + x− δ

x
. (0.5)

This describes µ as a function of the fixed point x. One computes that

F ′

µ,δ(x) = µ− 3x2 which equals 1 when µ = 1 + 3x2. (0.6)

When we equate (0.5) and (0.6), we find that the only real solution is x =

−
(

δ

2

)
1

3

whence µ = 3

(

δ

2

)
2

3

+ 1, as required.

We note that this is a ’blue-sky’ or saddle-node bifurcation that takes place.
Note though, that this is ’global’, too, because the other fixed point has
changed stability (its derivative passes through −1, in analogy with the pitch-
fork bifurcation above).

(Q10) Prove the following theorem:

Theorem.[Saddle-Node Bifurcation Theorem] Let fµ(x) be a function that is C3

in both variables. Assume that there is a µc, xc such that
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Figure 0.3: Bifurcation diagram for the map Fµ,δ with δ = 1/10. At approximately
µ = 1.4, the fixed point x ≃ 0.74 becomes unstable and a pair of stable fixed points
appear (lower right). This graph looks like the pitchfork above, where the two tines have
been slid off the central one.

(a) xc = fµc
(xc);

(b) a = f ′′

µc
(xc) 6= 0;

(c) b =
∂fµ
∂µ

∣

∣

∣

∣

x=xc,µ=µc

6= 0;

(d) f ′

µc
(xc) = 1.

Then there exists a C2 function µ = µ(x) such that

(i) µ(xc) = µc;

(ii) fµ(x)(x) = x for all x near xc; and

(iii) µ(x) = µc −
a

2b
(x− xc)

2 +O(|x− xc|3).

Conclude that fµ undergoes a saddle-node bifurcation at µ = µc and fµ has fixed

points x±(µ) = xc±
√

−2b(µ− µc)

a
+O(|µ−µc|). [Hint: use the implicit function

theorem.]

Compare the statement of the SNB Theorem and Q2.

Solution. We will use the hint supplied. Let us define

g(x, µ) = fµ(x)− x, (0.7)
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which is C3 in both variables. The hypotheses imply

g(xc, µc) = 0
∂g

∂x

∣

∣

∣

∣

xc,µc

= 0,
∂g

∂µ

∣

∣

∣

∣

xc,µc

= a 6= 0, (0.8)

The final fact allows us to use the implicit function theorem. This implies that
there is a C3 function µ = µ(x) that is defined in an interval J containing xc, with
µ(xc) = µc, such that

g(x, µ(x)) = 0 ∀x ∈ J. (0.9)

Applying implicit differentation to (0.9), we get

0 =
∂

∂x
g(x, µ(x)) = f ′

µ(x)− 1 +
∂g

∂µ
· µ′(x) so

µ′(xc) = 0 (0.10)

and

0 =
∂2

∂x2
g(x, µ(x)) = f ′′

µ(x) +
∂2g

∂x∂µ
· µ′(x) +

∂g

∂x
· µ′′(x) so

µ′′(xc) = −a

b
. (0.11)

Taylor’s theorem implies that µ(x) = µ(xc) + µ′(xc)(x− xc) +
1
2
µ′′(xc)(x− xc)

2 +
O(|x− xc|3). Thus

µ(x) = µc −
a

2b
(x− xc)

2 +O(|x− xc|3) whence (0.12)

x = xc ±
√

−2b(µ− µc)

a
+O(|µ− µc|). (0.13)

(Q11) Prove the following theorem:

Theorem.[Period-Doubling/Flip Bifurcation Theorem] Let fµ(x) be a function
that is C4 in both variables. Assume that there is a µc such that

(a) 0 = fµ(0) for all µ near µc;

(b) f ′

µc
(0) = −1;

(c) a = f ′′′

µc
(0) 6= 0; and

(d) b =
∂
(

f 2
µ

)′

∂µ

∣

∣

∣

∣

∣

x=0,µ=µc

6= 0;

(e) f ′

µc
(xc) = 1.

Then there exists a C4 function µ = µ(x) defined near x = 0 such that

(i) µ(0) = µc;
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(ii) fµ(x)(x) 6= x, f 2
µ(x)(x) = x for all x 6= 0 near 0; and

(iii) µ(x) = µc −
a

2b
(x− xc)

2 +O(|x− xc|3).

Conclude that fµ undergoes a saddle-node bifurcation at µ = µc and fµ has fixed

points x±(µ) = ±
√

−2b(µ− µc)

a
+O(|µ− µc|).

Hint: use the implicit function theorem for the function

H(x, µ) =







f 2
µ(x)− x

x
if x 6= 0,

(f 2
µ)

′(0) if x = 0.

Compare the statement of the above Theorem, Q9e and our work in class.


