Problem Sheet 3

(Q1) Consider the \mathbb{R}^1 map with fixed point $x^* = \alpha$ represented by the Taylor series

$$x_{n+1} = F(x_n) = \alpha + \beta_1 (x - \alpha) + \beta_2 (x - \alpha)^2 + \beta_3 (x - \alpha)^3 + \beta_4 (x - \alpha)^4 + \cdots$$

where $\beta_{1,2,3,4,\ldots}$ are constants. Let $G(x) = F(x + \alpha) - \alpha$. Show that G has a fixed point at the origin and

$$D_s\{F\}(\alpha) = D_s\{G\}(0).$$

Solution.

We have that $G(0) = F(\alpha) - \alpha = 0$ since F fixes α . The chain implies that $G^{(k)}(x) = F^{(k)}(x+\alpha)$ for all $k \ge 1$. This implies that $D_s\{G\}(x) = D_s\{F\}(x+\alpha)$ for all x, which proves the claim.

- (Q2) Consider the system $x_{n+1} = F_{\mu}(x_n)$, with $F_{\mu}(x_n) = \mu + x_n^2$ where $x_n, \mu \in \mathbb{R}$.
 - (a) Find the fixed points of the system in terms of μ .
 - (b) Find the value of x, and the corresponding value of the parameter μ , at which there is a saddle-node bifurcation.
 - (c) Find the value of x, and the corresponding value of the parameter μ , at which there is a flip bifurcation. Is it super- or subcritical?

Solution. See the solution to Q1 in assignment 3.

(Q3) Let I = [a, b] be a closed interval and $F : I \to I$ be a continuous function. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).

Solution.

Let f(x) = F(x) - x. Since F maps I into itself, $F(a) \ge a$ and $F(b) \le b$. Thus $f(a) \ge 0$ and $f(b) \le 0$. Since f is continuous, the intermediate value theorem says that there is an $\eta \in [a, b]$ such that $f(\eta) = 0$. Thus $F(\eta) = \eta$.

(Q4) Let I = [a, b] be a closed interval and F be a continuous function such that $F(I) \supset I$. Show that F has a fixed point in I. (Hint: Intermediate Value Theorem).

Solution.

Since $F(I) \supset I$, we have that either F(a) < a and F(b) > b or F(a) > b and F(b) < a. In the both cases, the intermediate value theorem can be applied as in Q3 to show the claim.

(Q5) Show that if the mapping $x_{n+1} = F(x_n)$ with F(x) continuous has a period-2 orbit, then it also has a fixed point. (Hint: Intermediate Value Theorem).

Solution. Let $\{a, b\}$ be the period-2 orbit with a < b. Then F(a) = b and F(b) = a. The intermediate theorem implies that $F(I) \supset I$ where I = [a, b]. [Check: let a < y < b. Then F(a) > y and F(b) < y. Therefore there is an $x \in (a, b)$ s.t. F(x) = y.] Now apply Q4.

(Q6) Let $F : I \to I$ be a continuous map of I = [0, 1]. Show that if F has a prime period-3 orbit, then F has a fixed point and a prime period-2 point. This completes the proof of the simple Sharkovskii theorem.

Solution. Assume that the orbit is $\{a, b, c\}$ with a < b < c and F(a) = b, F(b) = c, F(c) = a. F maps the intervals $J_0 = [a, b]$ and $J_1 = [b, c]$ by $J_1 \subset F(J_0)$ and $J_0 \cup J_1 \subset F(J_1)$. Therefore, $J_1 \subset F(J_1)$ so F has a fixed point in J_1 . On the other hand, we showed that there are intervals $K_1 \subset J_0$ and $K_0 \subset J_1$ such that

$$F(K_0) = K_1, \quad F(K_1) = K_2 = J_1, \quad K_0 \subset F(K_2).$$

Therefore $K_0 \subset F^2(K_0)$ so F^2 has a fixed point x in K_0 . Since $x \in J_1, F(x) \in J_0$ and $x = F^2(x) \in J_1$, we see that if x were a fixed point then $x \in J_0 \cap J_1 = \{b\}$. Since b is not fixed, this proves that x is a prime period-2 point.

(Q7) Show that the mapping $x_{n+1} = F(x_n)$ (a) has no prime period-k orbits for $k \ge 2$ if F'(x) > 0;

> (b) has a unique fixed point and no prime period-k orbits for $k \ge 3$ if F'(x) < 0. (Hint: consider the ordering of the x_j in a periodic orbit $(x_0, x_1, \dots, x_{k-1})$; for F'(x) < 0, consider the sign of the derivative of $F^k(x)$.)

> **Solution.** N.B.: The question must say *prime* period. It is false without this specification.

- (a) Assume that $\{x_j\}$ is a prime period- $k \ge 2$ orbit, where x_0 is the smallest point on the orbit and $x_j = F^j(x_0)$. We see that $x_0 < x_1$ or $x_1 < x_0$. In the former case, since F is increasing $x_j = F^j(x_0) < F^j(x_1) = x_{j+1}$ for all j, and so $x_0 < x_1 < \ldots < x_{k-1} < x_k$ But $x_k = x_0$. Absurd. The argument when $x_1 < x_0$ is similar.
- (b) F has a fixed point: because $F(x) x \to -\infty$ as $x \to \infty$ (since F is decreasing so $F(x) \leq F(0)$ for $x \geq 0$) and $F(x) - x \to +\infty$ as $x \to -\infty$ (since F is decreasing $F(x) \geq F(0)$ for $x \leq 0$). The intermediate value theorem implies that F(x) - x must vanish.

Assume that F has a *prime* period-k orbit with $k \ge 3$. Let $\{x_j\}$ be a prime period- $k \ge 3$ orbit, where x_0 is the smallest point on the orbit and $x_j = F^j(x_0)$. Observe that F^2 is increasing. Since the orbit has prime period $k \ge 3$, either $x_0 > x_2$ or $x_0 < x_2$. In the first case, since F^2 is increasing $x_2 = F^2(x_0) < F^2(x_2) = x_4$ and more generally, $x_0 < x_2 < x_4 < \cdots < x_{2n} < \cdots$. This contradicts the fact that the set $\{x_{2j}\}$ is finite (since the periodic orbit is finite). The case $x_0 > x_2$ is similar. This proves the claim.

(Q8) Consider the \mathbb{R}^1 family of mappings

$$x_{n+1} = G_{\mu}(x_n) = \mu x_n \left(1 - x_n^4\right) \qquad (\mu > 0).$$

- (a) Find the fixed point of this mapping with x > 0. For which range of values of μ does it exist?
- (b) Find the value of μ for which the fixed point with x > 0 undergoes a flip bifurcation and discuss its nature.
- (c) The mapping undergoes a sequence of period–doubling bifurcations as μ increases. Describe briefly this phenomenon.
- (d) Describe the nature of all period-doubling bifurcations of this mapping.

Solution.

(a) We wish to find those x solving $x = G_{\mu}(x)$, that is,

$$x = \mu x (1 - x^4)$$
 so
 $x = \pm i \left(1 - \frac{1}{\mu}\right)^{\frac{1}{4}}$, or $x = \pm \left(1 - \frac{1}{\mu}\right)^{\frac{1}{4}}$ or $x = 0.$ (0.1)

We see that x = 0 is real for all μ and $x_{\pm} = \pm \left(1 - \frac{1}{\mu}\right)^{\frac{1}{4}}$ is real for $\mu \ge 1$ and $x_{\pm} > 0$ for $\mu > 1$.

(b) We compute that $G'_{\mu} = -5\mu x^4 + \mu$, so the derivative of G_{μ} at the fixed point x_+ is equal to

$$-4\mu + 5.$$
 (0.2)

In order to have a flip bifurcation, we need $G'_{\mu}(x_{+}) = -1$, so $\mu = 3/2$ and $x_{+} = \frac{1}{2^{\frac{1}{4}}}$.

To determine the nature of the flip bifurcation, we compute the Schwartzian derivative,

$$D \{G_{\mu}\}(x) = \frac{G_{\mu}''(x)}{G_{\mu}'(x)} - \frac{3 \left(G_{\mu}''(x)\right)^{2}}{2 \left(G_{\mu}'(x)\right)^{2}}$$
$$= -\frac{300x^{6} + 60x^{2}}{25x^{8} - 10x^{4} + 1}$$
$$= -\frac{300x^{6} + 60x^{2}}{(5x^{4} - 1)^{2}}.$$
(0.3)

Since the denominator is positive everywhere except at $x = \pm 1/\sqrt[4]{5}$, we conclude that $D\{G_{\mu}\}(x_{+}) < 0$. Therefore, the bifurcation is a supercritical flip bifurcation.

- (c-d) Since $D\{G_{\mu}\}(x) < 0$ for $x \neq \pm 1/\sqrt[4]{5}$, we see that $D\{G_{\mu}^{n}\}(x) < 0$ for all $x \neq \pm 1/\sqrt[4]{5}$ and all n. This implies that all period-doubling bifurcations are supercritical, so a stable period 2^{n} periodic orbit becomes unstable and gives birth to a nearby period 2^{n+1} stable orbit. See figure 0.1.
- $(\mathbf{Q9})$ Consider the \mathbb{R}^1 mapping

$$x_{n+1} = F_{\mu}(x_n)$$
 with $F_{\mu}(x) = \mu x - x^3$ and $\mu > 0$.

- (a) Find the fixed points of the mapping F_{μ} .
- (b) Discuss the existence and stability of the fixed points in terms of μ , and thereby show that the mapping undergoes bifurcations for $\mu = 1$ and $\mu = 2$.
- (c) Describe the bifurcation which arises at $\mu = 1$. Sketch the fixed points of F_{μ} on a (μ, x) bifurcation diagram for $0 < \mu < 3$. Indicate stability on your sketch.

Figure 0.1: Period-doubling for the map G_{μ} . The right-hand limit is $\mu = 5^{5/4}/4$, the parameter value beyond which G_{μ} no longer maps [0, 1] into [0, 1].

- (d) Determine whether the flip bifurcations at $\mu = 2$ are supercritical or subcritical by computing the Schwarzian derivative of F_{μ} . What are the implications of this result for period doubling?
- (e) Consider the perturbed mapping

$$F_{\mu,\delta}(x) = \mu x - x^3 + \delta$$

such that $F_{\mu,0}(x) = F_{\mu}(x)$. For a fixed, small value of $\delta > 0$, sketch on a (μ, x) diagram the position of the fixed points of $F_{\mu,\delta}$.

(Hint: To sketch the position of the fixed points $x(\mu)$, it is convenient to consider the graph of the inverse relationship $\mu(x)$ and use reflection about the line $x = \mu$ to deduce the curves $x(\mu)$; there is then no need to solve the cubic equation for the fixed points explicitly).

(f) Show that the mapping $F_{\mu,\delta}$ undergoes a bifurcation for $\mu = 1 + 3(\delta/2)^{2/3}$. What is the nature of this bifurcation?

Solution.

- (a) We solve $x = F_{\mu}(x)$ to find that x = 0 or $1 = \mu x^2$ so $x = \pm \sqrt{\mu 1}$, for $\mu \ge 1$.
- (b) Since $F'_{\mu}(0) = \mu$, at $\mu = 1$, the fixed point x = 0 goes from stable to unstable and bifurcates into a pair of stable fixed points at $x_{\pm} = \pm \sqrt{\mu - 1}$. At $\mu = 2$, $F'_{\mu}(x_{\pm}) = -1$, so these fixed points undergo a flip bifurcation at $\mu = 2$.
- (c) See figure 0.2.

Figure 0.2: Bifurcation diagram for the map F_{μ} . The bifurcation at $\mu = 1$ is called a *pitchfork bifurcation*. Several pitchfork bifurcations are shown in (b).

(d) We compute the Schwartzian derivative of F_{μ} is

$$D\{F_{\mu}\}(x) = -\frac{6(6x^{2} + \mu)}{(3x^{2} - \mu)^{2}}$$
(0.4)

which is < 0 for all $\mu > 0$ and all x. It follows that the flip bifurcation at $\mu = 2$ is supercritial, as are all subsequent period-doubling bifurcations (see 0.2).

- (e) See figure 0.3.
- (f) The fixed points of $F_{\mu,\delta}$ satisfy

$$x = F_{\mu,\delta}(x) = \mu x - x^3 + \delta \qquad \Longrightarrow \ \mu = \frac{x^3 + x - \delta}{x}. \tag{0.5}$$

This describes μ as a function of the fixed point x. One computes that

$$F'_{\mu,\delta}(x) = \mu - 3x^2$$
 which equals 1 when $\mu = 1 + 3x^2$. (0.6)

When we equate (0.5) and (0.6), we find that the only real solution is $x = -\left(\frac{\delta}{2}\right)^{\frac{1}{3}}$ whence $\mu = 3\left(\frac{\delta}{2}\right)^{\frac{2}{3}} + 1$, as required.

We note that this is a 'blue-sky' or saddle-node bifurcation that takes place. Note though, that this is 'global', too, because the other fixed point has changed stability (its derivative passes through -1, in analogy with the pitchfork bifurcation above).

(Q10) Prove the following theorem:

Theorem. [Saddle-Node Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^3 in both variables. Assume that there is a μ_c, x_c such that

Figure 0.3: Bifurcation diagram for the map $F_{\mu,\delta}$ with $\delta = 1/10$. At approximately $\mu = 1.4$, the fixed point $x \simeq 0.74$ becomes unstable and a pair of stable fixed points appear (lower right). This graph looks like the pitchfork above, where the two times have been slid off the central one.

(a)
$$x_c = f_{\mu_c}(x_c);$$

(b) $a = f''_{\mu_c}(x_c) \neq 0;$
(c) $b = \frac{\partial f_{\mu}}{\partial \mu}\Big|_{x=x_c,\mu=\mu_c} \neq 0;$
(d) $f'_{\mu_c}(x_c) = 1.$

Then there exists a C^2 function $\mu = \mu(x)$ such that

- (i) $\mu(x_c) = \mu_c;$
- (ii) $f_{\mu(x)}(x) = x$ for all x near x_c ; and

(iii)
$$\mu(x) = \mu_c - \frac{a}{2b}(x - x_c)^2 + O(|x - x_c|^3).$$

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu = \mu_c$ and f_{μ} has fixed points $x_{\pm}(\mu) = x_c \pm \sqrt{\frac{-2b(\mu - \mu_c)}{a}} + O(|\mu - \mu_c|)$. [Hint: use the implicit function theorem.]

Compare the statement of the SNB Theorem and Q2.

Solution. We will use the hint supplied. Let us define

$$g(x,\mu) = f_{\mu}(x) - x,$$
 (0.7)

which is C^3 in both variables. The hypotheses imply

$$g(x_c, \mu_c) = 0 \qquad \qquad \frac{\partial g}{\partial x}\Big|_{x_c, \mu_c} = 0, \qquad \frac{\partial g}{\partial \mu}\Big|_{x_c, \mu_c} = a \neq 0, \qquad (0.8)$$

The final fact allows us to use the implicit function theorem. This implies that there is a C^3 function $\mu = \mu(x)$ that is defined in an interval J containing x_c , with $\mu(x_c) = \mu_c$, such that

$$g(x,\mu(x)) = 0 \qquad \qquad \forall x \in J. \quad (0.9)$$

Applying implicit differentiation to (0.9), we get

$$0 = \frac{\partial}{\partial x}g(x,\mu(x)) = f'_{\mu}(x) - 1 + \frac{\partial g}{\partial \mu} \cdot \mu'(x) \qquad \text{so}$$
$$\mu'(x_c) = 0 \qquad (0.10)$$

and

$$0 = \frac{\partial^2}{\partial x^2} g(x, \mu(x)) = f''_{\mu}(x) + \frac{\partial^2 g}{\partial x \partial \mu} \cdot \mu'(x) + \frac{\partial g}{\partial x} \cdot \mu''(x) \quad \text{so}$$
$$\mu''(x_c) = -\frac{a}{b}.$$
(0.11)

Taylor's theorem implies that $\mu(x) = \mu(x_c) + \mu'(x_c)(x - x_c) + \frac{1}{2}\mu''(x_c)(x - x_c)^2 + O(|x - x_c|^3)$. Thus

$$\mu(x) = \mu_c - \frac{a}{2b}(x - x_c)^2 + O(|x - x_c|^3) \qquad \text{whence} \qquad (0.12)$$

$$x = x_c \pm \sqrt{\frac{-2b(\mu - \mu_c)}{a}} + O(|\mu - \mu_c|).$$
(0.13)

(Q11) Prove the following theorem:

Theorem. [Period-Doubling/Flip Bifurcation Theorem] Let $f_{\mu}(x)$ be a function that is C^4 in both variables. Assume that there is a μ_c such that

(a) $0 = f_{\mu}(0)$ for all μ near μ_c ; (b) $f'_{\mu_c}(0) = -1$; (c) $a = f'''_{\mu_c}(0) \neq 0$; and (d) $b = \frac{\partial (f_{\mu}^2)'}{\partial \mu} \Big|_{x=0,\mu=\mu_c} \neq 0$; (e) $f'_{\mu_c}(x_c) = 1$.

Then there exists a C^4 function $\mu = \mu(x)$ defined near x = 0 such that

(i)
$$\mu(0) = \mu_c;$$

(ii)
$$f_{\mu(x)}(x) \neq x$$
, $f_{\mu(x)}^2(x) = x$ for all $x \neq 0$ near 0; and
(iii) $\mu(x) = \mu_c - \frac{a}{2b}(x - x_c)^2 + O(|x - x_c|^3)$.

Conclude that f_{μ} undergoes a saddle-node bifurcation at $\mu = \mu_c$ and f_{μ} has fixed points $x_{\pm}(\mu) = \pm \sqrt{\frac{-2b(\mu - \mu_c)}{a}} + O(|\mu - \mu_c|).$

Hint: use the implicit function theorem for the function

$$H(x,\mu) = \begin{cases} \frac{f_{\mu}^{2}(x) - x}{x} & \text{if } x \neq 0, \\ (f_{\mu}^{2})'(0) & \text{if } x = 0. \end{cases}$$

Compare the statement of the above Theorem, Q9e and our work in class.