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(Q1) Consider the 2×2 real-valued matrix A, with trace τ and determinant ∆. In this ques-
tion, you should make use of the Cayley–Hamilton theorem: matrix A satisfies its own
characteristic equation; i.e., A2 − τA+∆I = 0 where I is the identity matrix.

(a) Assuming that τ = 0, show that

A2n = (−1)n∆nI, A2n+1 = (−1)n∆nA.

(b) Assuming that ∆ = 0, show that

An = τn−1A.

Deduce simple expressions for exp(A) in each case.

Solution.

(a) τ = 0: The Cayley-Hamilton theorem then says that A2 = −∆I, whence A2n =
(−∆)nI and A2n+1 = (−∆)nA. Then

eA =
∞∑

n=0

1

n!
×An =

∑

n=0

(−1)n∆n

(2n)!
× I +

∞∑

n=0

(−1)n∆n

(2n+ 1)!
×A = cos(∆)I + sin(∆)A.

(b) ∆ = 0: In this case, A1 = τ0A and A2 = τ1A which proves the claim above for
n = 1, 2. Assume that An = τn−1A for an n. Then An+1 = A(An) = τn−1A2 =
τnA, which proves the claim by induction. Then

eA =
∞∑

n=0

1

n!
×An = I+

∞∑

n=1

τn−1

n!
A = I+ τ−1A

(
−1 +

∞∑

n=0

τn

n!

)
= I− τ−1A+

eτ

τ
A.

(Q2) Let

xn+1 = g(xn) = xn + ǫ sin(2πxn) where x ∈ [0, 1], |ǫ| < 1

2π
.

(a) Show that g maps the unit interval to itself.

(b) Show that g has exactly three fixed points in the unit interval. If ǫ > 0, then two
are sources, and one is a sink.

(c) Determine the (un)stable manifold of each fixed point.

(d) Argue/Prove that the Hartman-Grobman conjugacy is defined on an entire (un)stable
manifold.

Solution.

(a) To show that g([0, 1]) ⊂ [0, 1], it suffices to show that the maximum (resp. mini-
mum) of g|[0, 1] is ≤ 1 (resp. ≥ 1). Since g′(x) = 1 + 2πǫ cos(2πx), the hypothesis
that |ǫ| < 1

ǫ implies that g′(x) > 0 for all x. Thus 0 = g(0) ≤ g(x) ≤ g(1) = 1 for
all x ∈ [0, 1].

This proves that g maps the unit interval to itself (and we also showed g is onto).

(b) A fixed point solves x = g(x) iff 0 = ǫ sin(2πx) iff 2x is an integer. Thus x = 0,
1

2
, 1

are the fixed points of g on [0, 1]. Since g′(0) = 1+2πǫ = g′(1) and g′(
1

2
) = 1−2πǫ,

if 1
2π > ǫ > 0, then g′(0) = g′(1) > 1 and |g′(0)| < 1. This proves that 0, 1 are

sources and 1/2 is a sink.
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(c) On the interval (0, 1/2), g(x) > x, so an orbit with x0 ∈ (0, 1/2) is a monotone
increasing sequence xn. Since g maps the interval [0, 1] to itself, the sequence must
converge to a point x∗. This point is a fixed of g since x∗ = lim

n→∞
xn = lim

n→∞
xn+1 =

g(x∗). Moreover, x∗ cannot be a source, so x∗ = 1/2. This proves that the stable
manifold of 1/2 includes (0, 1/2]. A symmetric argument shows that it also includes
[1/2, 1).

Finally, the unstable manifold of 0 must be [0, 1/2) and that of 1 must be (1/2, 1].

(d) Take the fixed point 1/2. The H-G theorem says that there is an interval surround-
ing 1/2 on which g is conjugate to x 7→ λ(x− 1/2) + 1/2. Take a point x0 ∈ (0, 1),
the stable manifold of 1/2. Since xn → 1/2, there is an N s.t. xN = gN (x0) lands
in the interval. Define h(x0) = g−N · h(xN ), where h is the H-G conjugacy. It
suffices to check that this extension of h is independent of the choice of N .

Remark. The ‘right’ way to view our DS is to take x mod 1. Then 0 ≡ 1 and the
phase portrait is easily sketched.

(Q3) Let

xn+1 =

[
−1 1/2
1 0

]
xn = Axn

be a DS in the plane. Show that 0 is a hyperbolic fixed point. Determine the stable and
unstable subspaces and sketch the phase portrait.

Solution. Since the DS is linear, its fixed points solve (A−I)x = 0. Since det(A−I) =
1− 1/2 6= 0, the only fixed point is x = 0.

The characteristic polynomial of A is λ2 + λ − 1
2 which has roots λ± = −1±

√
3

2 . As
0 < λ+ < 1 and |λ−| > 1, the origin is a saddle. Since λ− < 0, the orbits along its
eigenspace will oscillate from one side of the origin to the other.

E+: this is the eigenspace of λ+, which is the kernel of

A− λ+I =

[
−1− λ+ 1/2

1 −λ+

]
.

The vector v+ =

[
λ+

1

]
spans E+.

E−: this is the eigenspace of λ−, which is the kernel of

A− λ−I =

[
−1− λ− 1/2

1 −λ−

]
.

The vector v− =

[
λ−
1

]
spans E−.

(Q4) Find the fixed points of the nonlinear map

xn+1 = x2n − 5xn + yn, yn+1 =
1

2
yn + x2n,

and discuss their stability. Compute the third-order Maclaurin series of the stable man-
ifold of (0, 0) [You will need to diagonalize the linear part of the system first].
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Figure .0.1: The phase portrait

Solution. The fixed point satisfy x = −5x+ y+ x2, y = y/2+ x2. Thus y = 2x2 and so
0 = −6x+ 3x2. Therefore, x = 0, y = 0 or x = 2, y = 4. We compute that

DF =

[
−5 + 2x 1

2x 1
2

]

so

DF(0,0) =

[
−5 1
0 1

2

]
, DF(2,4) =

[
−1 1
4 1

2

]
.

The eigenvalues of the first are −5, 1/2 so the origin is a saddle, while the second has
eigenvalues 1

4 ± 1
4

√
65, so it is a source.

To compute W+
loc we first must diagonalize DF(0,0). The unstable eigenspace E− is

spanned by v− =

[
1
0

]
. Thus stable eigenspace E+ is spanned by v+ =

[
2
11

]
. The

equation [
x
y

]
= x = u+v+ + u−v− =

[
2u+ + u−

11u+

]

yields
u+ = y/11, u− = x− 2y/11.

We then get that

u+n+1 = yn+1/11, u−n+1 = xn+1 − 2yn+1/11,
= 1

2yn/11 + x2n/11 = −5xn + yn − yn/11 + x2n − 2x2n/11,
= 1

2u
+
n + (2u+n + u−n )

2/11, = −5u−n + 9(2u+n + u−n )
2/11,

= 1
2u

+
n + 4

11(u
+
n )

2 = −5u−n + 36
11(u

+
n )

2

+ 4
11u

+
n u

−
n + 1

11(u
−
n )

2, +36
11u

+
n u

−
n + 9

11(u
−
n )

2
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We assume that W+
loc is the graph u− = g(u+). Since our coordinate system is chosen

to be along E±, g(0) = 0 and g′(0) = 0. Therefore, we can write

g(u) = a2u
2 + a3u

3 +O(u4).

Assuming that (u+n , u
−
n ) ∈ W+

loc we can compute u−n+1 in two ways.

(a) u−n+1 = g(u+n+1) since (u+n+1, u
−
n+1) ∈ W+

loc due to the invariance of W+
loc. Thus (· · ·

are the terms of degree 4 or more)

u−n+1 = a2(u
+
n+1)

2 + a3(u
+
n+1)

3 + · · · ,

= a2(u
+
n )

2/4 + (
4

11
a2 +

1

8
a3)(u

+
n )

3 + · · · ,

where we have used the fact that on W+
loc, u

+
n+1 =

1
2u

+
n + 4

11(u
+
n )

2+ 4
11a2(u

+
n )

3+ · · ·
which means that (u+n+1)

2 = (u+n )
2/4 + 4

11(u
+
n )

3 + · · · and (u+n+1)
3 = (u+n )

3/8.

(b) On the other hand u−n+1 is determined by the dynamical system, while u−n = g(u+n )
so

u−n+1 = −5u−n +
36

11
(u+n )

2 +
36

11
u+n u

−
n +

9

11
(u−n )

2,

= (−5a2 +
36

11
)(u+n )

2 + (−5a3 +
36

11
a2)(un)

3 + · · ·

Since these two expression must be equal, we get that

a2/4 = −5a2 +
36

11
,

4

11
a2 +

1

8
a3 = −5a3 +

36

11
a2

These equations have the solutions a2 = 48/77 and a3 = 256a2/451 = 12288/34727.
Thus

g(u) =
48

77
u2 +

12288

34727
u3 +O(u4).

(Q5) Let
xn+1 = xn/10 + xnyn, yn+1 = 2yn + x2n. (DS)

Compute the third-order Maclaurin series of a transformation u = Q(x) which trans-
forms this (DS) into the linear DS

un+1 = un/10, vn+1 = 2vn. (LDS)

That is, find Q such that QF = AQ where F is the map defined by the RHS of (DS)
and A is the matrix defined by the RHS of (LDS).

Solution. Let u = (u, v) and let F(x) = (x/10+ xy, 2y+ x2) where x = (x, y). We will
compute Q inductively, beginning with its degree 2 terms. Before we do this, note that
the linear part of our map F is already diagonal. To kill the quadratic terms xy, it will
suffice to choose an xy term in Q, etc. Thus, we will choose

Q(x,y) =

[
x
y

]
+

[
axy
bx2

]
+ · · · ,
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where · · · indicates terms of degree 3 or more. We compute that un+1 = Q(F(xn)) is
equal to

un+1 = Q(xn+1),

=

[
xn+1

yn+1

]
+

[
axn+1yn+1

bx2n+1

]
+ · · ·

=

[
xn/10 + xnyn

2yn + x2n

]
+

[
axnyn/5
bx2n/100

]
+ · · ·

=

[
xn/10
2yn

]
+

[
(a/5 + 1)xnyn
(b/100 + 1)x2n

]
+ · · ·

On the other hand, we want un+1 = Aun = AQ(xn) where A is the linear part of F.
Thus

un+1 = AQ(xn),

=

[
xn/10
2yn

]
+

[
axnyn/10

2bx2n

]
+ · · ·

This yields the equations

a/5 + 1 = a/10, b/100 + 1 = 2b,

so a = −10 and b = 100/199.

To compute the cubic terms in Q we make the observation that the only cubic terms to
be killed are those that were created when we kill the quadratic terms. These will be of
the form xy2 and x3 (created from xy) and x2y (created from x2). Thus, we will put

Q(x,y) =

[
x
y

]
+

[
axy
bx2

]
+

[
a0x

3 + a2xy
2

b2x
2y

]
+ · · ·

where · · · indicates terms of degree 4 or more. We compute that un+1 = Q(F(xn)) is
equal to

un+1 = Q(xn+1),

=

[
xn+1

yn+1

]
+

[
axn+1yn+1

bx2n+1

]
+

[
a0x

3
n+1 + a2xn+1y

2
n+1

b2x
2
n+1yn+1

]
+ · · ·

The first term (vector) contributes no cubics, while the second term contributes the cubic
terms ax3n/10 + 2axny

2
n and bx2nyn/5. The third term (vector) contributes a0x

3
n/10

3 +
a2xny

2
n2

2/10 and b2x
2
nyn2/10

2. The cubic part of un+1 is therefore

(∗) =
[
(a0/1000 + a/10)x3n + (2a2/5 + 2a)xny

2
n

(b2/50 + b/5)x2nyn

]

On the other hand, we want un+1 = Aun = AQ(xn). The cubic part of this expression
for un+1 is just A times the cubic part of Q:

(∗∗) =
[
a0x

3
n/10 + a2xny

2
n/10

2b2x
2
nyn

]
+ · · ·
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Since the expressions (*) and (**) should be equal, we get

a0/1000 + a/10 = a0/10, 2a2/5 + 2a = a2/10, b2/50 + b/5 = 2b2

The coefficients are found to be

a0 = −1000/99, a2 = 200/3, b2 = 1000/19701.

Thus

Q(x,y) =

[
x− 10xy − 1000

99 x3 + 200
3 xy2

y + 100
199x

2 + 1000
19701x

2y

]
+O(|x|4).

(Q6) Stable and unstable manifolds can be defined for saddles of continuous dynamical systems
in the same way as they are defined for discrete dynamical systems. In particular, the
stable manifold can be written as an expansion

u− = a2(u
+)2 + a3(u

+)3 + a4(u
+)4 + a5(u

+)5 + · · · .

The constant coefficients ai can then be obtained by equating two expressions for u̇−.
Consider the system

ẋ = −x+ y2

ẏ = y − x2

}
.

Find the coefficients a2, a3, a4 and a5 for the expansion of the stable manifold through
(0, 0).

Solution. Since the linear part of the vector field is already diagonal, we see that the
stable subspace is y = 0 and the unstable subspace is x = 0. Thus, we use u+ = x as
the coordinate on E+ and u− = y on E−.

We assume that W+
loc is the graph y = g(x). And since the linearized system is already

diagonal, g(0) = 0 = g′(0). Thus, we suppose that g(x) = a2x
2 + · · ·+ a5x

5 +O(x6).

On the one hand, if (x, y = g(x)) ∈ W+
loc, then we compute that

ẏ = g′(x)ẋ

= (2a2x+ 3a3x
2 + 4a4x

3 + 5a5x
4)(−x+ g(x)2) +O(x6)

= −(2a2x
2 + 3a3x

3 + 4a4x
4 + 5a5x

5) + (2a2x+ 3a3x
2 + 4a4x

3 + 5a5x
4)a22x

4 +O(x6)

= −2a2x
2 − 3a3x

3 − 4a4x
4 + (−5a5 + 2a32)x

5 +O(x6).

On the other hand, the derivative of y = g(x) is given by

ẏ = y − x2 = g(x)− x2

= (a2 − 1)x2 + a3x
3 + a4x

4 + a5x
5 +O(x6).

Equating these two expressions for ẏ yields the equations

−2a2 = a2 − 1, −3a3 = a3, −4a4 = a4, −5a5 + 2a32 = a5

so
a2 = 1/3, a5 = 1/81, a3 = a4 = 0.

Thus
g(x) = x2/3 + x5/81 +O(x6).
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(Q7) Consider the equilibrium 0 of the system

ẋ = −x
ẏ = 2y − x2

}
.

Give a series expansion of the stable manifold in the new variables, as far as 3rd order
terms.

Solution. This is virtually identical to Q5. See the Maple solution sheet.

(Q8) Consider a R2 system ẋ = f(x) with an equilibrium point x = 0 at which the linearised
system has an imaginary pair of eigenvalues λ = iσ, λ = −iσ, where σ > 0. In terms of
a complex variable z, the dynamics are assumed to be given by

ż = λz + az2 + bzz + cz2 +mz2z + · · · (0.1)

Following the treatment of discrete systems in §3.3 of the course notes, show that

(a) the quadratic terms in (0.1) can be eliminated by introducing the new variable
w = z + αz2 + βzz + γz2 with suitable α, β, γ;

(b) the further variable transformation ζ = w+dw3+ew2w+gww2+hw3 with suitable
d, e, g, h allows the elimination of all cubic terms apart from the term proportional
to ζ2ζ, leading to

ζ̇ = λζ + qζ2ζ +O(|ζ|4), with q = m+
iab

σ
− i|b|2

σ
− 2i|c|2

3σ
.

Conclude that the origin is stable if Re q < 0 and unstable if Re q > 0.

(Q9) Let
ẋ = −y + x2, ẏ = x+ y2x.

Is (0, 0) a stable or unstable equilibrium?

Solution. You find that λ = ±i = ±
√
−1 and z = x + iy. The differential equations

are transformed into

ż = iz +
1

4
z2 +

1

2
zz +

1

4
z2 − i

8
z2z + · · · , (0.2)

which gives us λ̄q = − 7
24 . So the origin is stable.

(Q10) Determine the stability of the origin for the dynamical system

xn+1 = xn − yn + x2n + y3n,

yn+1 = xn.

Solution. If we write our system as xn+1 = f(xn), we get that

df0 =

(
1 −1
1 0

)

which has eigenvalues λ =
1±

√
−3

2
, where are cube roots of −1. An eigenvector t of

dfT0 (transpose) is [−λ, 1]T , which gives

z = 〈t,x〉 = −λx+ y.
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We can solve for x and y and get

x =
1√
−3

(z − z̄), y = uz + ūz

where we take λ to be the root with a positive imaginary part and u =
1

2

(
1− 1√

−3

)
.

We can substitute in to get

zn+1 = −λxn+1 + yn+1

= −λ(xn − yn + x2n + y3n) + xn

= (1− λ)xn + λyn +
λ

3
(z2n − 2znzn + z2n)+

λ(u3z3n + 3u2ūz2nzn + 3uū2znz
2
n + ū3z3n)

= λzn + az2n + bznzn + cz2n + ez2nzn + · · · , (0.3)

where

a = c =
λ

3
b = −2λ

3
e = 3λu2ū = − 1√

−3
.

We know that there is a transformation ζ = h(z) such that the DS in (0.3) is transformed
into ζn+1 = λζn +mζ2nζ̄n +O(|ζn|4) where

m = e+
(2λ− 1)ab

λ(1− λ)
+

λ|b|2
λ− 1

+
2λ|c|2
λ3 − 1

, (0.4)

and the stability is determined by ~ = Re (λ̄m). We compute that

λ̄m = −λ̄
1√
−3

+ λ̄
(2λ− 1)λ2

λ(1− λ)
× −2

9
+ λ̄

λ

λ− 1
× 2

3
+ 2λ̄

λ

λ3 − 1
× 1

3

...

= −1

2
+
√
−1 ·R.

Since Re (λ̄m) < 0, so the equilibrium is stable.

At Examples Class 2 on Friday 29th October the solutions to Questions 5,6 and
10 will be discussed.


