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(Q1) Consider the logistic map

xn+1 = F (xn) = µxn(1− xn), where µ > 0 and x ∈ [0, 1].

(a) Find the fixed points of this map. For which values of µ do they exist?

(b) Find a period-2 orbit of the map (i.e., find x0 and x1 6= x0 such that x1 = F (x0)
and F (x1) = x0). For which values of µ does it exist?

Solution.

(a) x is a fixed point of F iff x = F (x) iff x = µx(1−x). Clearly x = 0 is one solution,
and the other satisfies 1 = µ(1− x) or x = −1+µ

µ
. Since 0 ≤ x ≤ 1, we require that

µ ≥ 1 for the second fixed point to exist (when µ = 1 it coincides with x = 0).

(b) x is a period-2 periodic point iff x is a fixed point of F 2 iff x = F (F (x)). There
are two obvious solutions: x = 0 and x = µx(1 − x). If we divide the polynomial
F (F (x))−x = µ2x(1−x)(1−µx(1−x))−x by µx(x− −1+µ

µ
) we get µ2x2−µ(µ+

1)x+ µ+ 1 = 0. The quadratic root formula gives

x± =
µ+ 1±

√

(µ− 3)(µ+ 1)

2µ
.

Clearly, these points are real only if µ ≥ 3 (and at µ = 3, they equal 2/3 =
−1+µ

µ

∣

∣

∣

µ=3
, which is also a period-1 periodic point). For µ > 3, they are distinct

from the period-1 points, so it must be the case that F (x−) = x+, F (x+) = x−.

(Q2) Show that the discrete system

xn+1 =
1

4
− 1

2a
− a2x2n

is equivalent to the logistic map with µ = a. (Hint: the variable transformation relating
the two systems is affine; i.e., yn = αxn + β .)

Solution. Let y = αx + β or x = y−β
α

and let f(x) = c − a2x2 where c = 1
4
− 1

2a
,

g(y) = ay(1− y2). We want xn+1 = f(xn) to imply that yn+1 = g(yn). This leads to

yn+1 = αxn+1 + β = αc+ β − a2αx2n,

= αc+ β − a2

α2
(y2n − 2βyn + β2),

= αc+ β − a2β2

α
+

2a2β

α
yn − a2

α
y2n

and we want yn+1 = ayn(1− yn) so

a2

α
= a =⇒ α = a, 2aβ = a =⇒ β = 1/2, ac+ 1/2− a/4 = 0 =⇒ c =

1

4
− 1

2a
.

Thereofore the equations are consistent and y = ax+ 1/2.

Remark. Let us formulate the problem in terms of maps. Let h(x) = αx + β and let
h−1 be the inverse of h. We are seeking a solution to the equation

g(y) = h ◦ f ◦ h−1(y) or g ◦ h = h ◦ f.
The first equation says that g is conjugate to f by the conjugacy h. Maps are conjugate
iff the corresponding dynamical systems can be obtained from one another by a change
of coordinates – the change of coordinates map being the conjugacy.



Dynamical Systems (MATH11027) Problem Sheet 1 2

(Q3) Show that the map
θn+1 ≡ 2θn mod 1

can be transformed into the logistic map with µ = 4 and 0 ≤ xn ≤ 1 by the change of
variable xn = sin2(πθn). Find x0 such that x8 = x0 but x1, . . . , x7 6= x0.

Solution. 1. We want to show that θn+1 = 2θn mod 1 and xn = sin2(πθn) implies
xn+1 = 4xn(1− xn). If θn+1 = 2θn mod 1 and xn = sin2(πθn), then

sin2(πθn+1) = sin2(2πθn)

= 4 sin2(πθn) cos
2(πθn),

= 4 sin2(πθ) (1− sin2(πθn))

= 4xn(1− xn),

= xn+1.

Solution 2. Let f(x) = 4x(1 − x), g(θ) = 2θ mod 1 and h(θ) = sin2(πθ). We want to
show that

h ◦ g = f ◦ h.
Now

h ◦ g(θ) = sin2(2πθ)

= 4 sin2(πθ)(1− sin2(πθ)),

= 4h(θ)(1− h(θ)),

= f ◦ h(θ).

Note that the calulation comes down to basically the same thing, except that in the
second case we always stay in the θ coordinate system.

To find a period-8 orbit of the logistic map, observe that if θn = θ0, then xn = x0.
Therefore, we see that the period-n orbits of the times-2 map are given by θn =
2nθ0 = θ0 mod 1 or θ0 = k

2n−1
mod 1 for some integer k. In the case n = 0, we get

θ0 = k
255

mod 1 or θ0 = 0, 1/255, 2/255, . . . , 254/255 mod 1. We see that if θ0 = 1/255,
then θ0, · · · , θ7 are distinct (they have increasing denominators all less than 255). Also,
k/255 = −k/255 mod 1 iff k/255 = 0, 1/2 mod 1. Since our points have an even denom-
inator (except for the θ0), we see that no point on this period-8 orbit is paired with
its minus counterpart. Therefore the map θk 7→ sin2(πθk) is 1-1 on this periodic orbit.
Since this periodic orbit has prime period 8, x0 = sin2( π

255
) is a prime-period-8 periodic

point of the logistic map.

(Q4) Find the Poincaré map of the autonomous system

ẍ+ 2ẋ+ 5x = 0

for Σ = {(x, y) = (x, 0), x > 0}.
Solution.

The general solution to the DE with ICs (x(0) = a, ẋ(0) = 0) is x(t) = ae−t(cos(2t) +
1
2
sin(2t)), y(t) = ẋ(t) = −5

2
ae−t sin(2t). Thus, y(t) = 0 for the first time at t = π/2

(when x < 0) and then at t = π (when x > 0). Thus, the Poincaré map is P (a) =
x(π) = ae−π.
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(Q5) Find the Poincaré map of the periodically forced system ẍ+ x = cos 2t.

Solution. Here, the phase space is {(x, y = ẋ, t mod π)} = R
2×S1. The Poincaré map is

from Σ = {t ≡ 0} to itself. The general solution is x(t) = (a+1/3) cos t+b sin t− 1
3
cos(2t),

y(t) = b cos t− (a+ 1/3) sin t+ 2
3
sin(2t). Then P (a, b) = (x(π), y(π)) = (−a− 2

3
,−b).

(Q6) If {xn} satisfies the recurrence relation

xn+1 = λxne
−xn

where 0 < λ < 1 and x0 > 0, show that xn → 0 as n → ∞. Find the fixed point different
from 0 which exists for λ > 1.

Solution. Let g(x) = λxe−x. If 0 < λ < 1, and x > 0, then 0 < g(x) < x. Therefore,
the sequence xn is monotone decreasing and bounded below by 0, hence it converges to
a limit a. Since xn+1 = g(xn) also converges to a, we get that a = g(a). Therefore,
a = λae−a or a = 0, a = lnλ. Since λ < 1, we see that a = 0. When λ > 1, we have the
extra f.p. lnλ.

(Q7) Let A =

(

0 1
1 0

)

. Compute etA. What does this imply for the orbits of the linear system

ẋ = Ax?

Solution.

A has eigenvectors v+ = [1, 1]′ and v− = [1,−1]′ with eigenvalues 1 and −1 respectively.
Therefore

etA = PetΛP−1 =

[

1 1
1 −1

]

exp(t

[

1 0
0 −1

]

)

[

1 1
1 −1

]

× 1

2
,

=

[

1 1
1 −1

] [

et 0
0 e−t

] [

−1 −1
−1 1

]

× 1

−2
,

=

[

cosh t sinh t
sinh t cosh t

]

,

where cosh t = (et + e−t)/2 and sinh t = (et − e−t)/2.

Except along the line E− = Rv−, all orbits will diverge to infinity. Orbits on the stable
subspace E− will converge to 0.

(Q8) Consider the one-dimensional map xn+1 = F (xn), where F (x) = x− hx3.

(a) Compute F 2, the second iterate of the map.

(b) Deduce that x =
√

2/h belongs to a period-2 orbit.

(c) What is the other point of this periodic orbit?

Solution.

(a) F (F (x)) = F (x− h3) = (x− hx3)− h(x− hx3)3 = x− 2hx3 + 3h3x7 + h4x9.

(b) We see that x = F (F (x)) iff x = 0 or 0 = −2 + 3hx2 − 3h2x4 + h3x6. Substitute
u = hx2 gives 0 = −2 + 3u − 3u2 + u3. From the constant term on guesses that
±1,±2 may be roots, and by substitution u = 2 is a root. Factoring yields a

quadratic with roots 1±
√
−3

2
. Therefore, the only real points x s.t. x = F (F (x))

are x = 0,±
√

2
h
.
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(c) Since x = 0 is the only fixed point of F , we must have that F (
√

2
h
) = −

√

2
h
and

F (−
√

2
h
) =

√

2
h
.

(Q9) Consider the system xn+1 = −2
3
xn + yn, yn+1 = 1

3
(−4xn + 5yn), with x0 = α, y0 = β.

Show that (xn, yn) → (0, 0) as n → ∞, for any choice of α and β. Show also that the
convergence is faster if α = β than if α 6= β.

Solution. The eigenvectors/values of A are

2/3,

[

3
4

]

, 1/3,

[

1
1

]

.

The general solution to the difference equation is therefore

xn = a(2/3)n
[

3
4

]

+ b(1/3)n
[

1
1

]

,

where x0 has components a and b along the respective eigenvectors. Clearly xn → 0 as
n → ∞. In general |xn| ∼ 5|a|(2/3)n, unless a = 0, when |xn| =

√
2|b|(1/3)n, which

converges to 0 faster.

(Q10) For a positive real number x let [x] be the floor of x–the largest integer that is less than
or equal to x – and let {x} = x − [x] be the fractional part of x. The Gauss map is
defined as g(x) = { 1

x
} if x 6= 0 and g(0) = 0. Define a discrete DS

xn+1 = g(xn).

(a) Show that the range of g is [0, 1).

(b) Show that g has a fixed point at x = 0.

(c) Show that for each positive integer k there is a fixed point x∗k of g such that
x∗k = 1

k
− 1

k3
+ · · · for k ≥ 2. [Hint: to see the plausibility, draw the graphs of

y = g(x) and y = x.]

(d) Let ai, i = 1, . . . be non-negative integers which satisfy the property that ai = 0
implies aj = 0 for all j ≥ i. Let α = [a1, . . .] denote the continued fraction

α =
1

a1 +
1

a2 +
1

a3 +
1

· · ·

. (1)

It is a fact that every irrational real number α ∈ [0, 1) has a unique continued
fraction expansion of this form. Assuming this fact, prove that if x1 = α and
∀n ≥ 1

xn+1 = g(xn) (2)

then ∀n ≥ 1
an = [1/xn]. (3)

(e) Conversely, argue that if we take (2–3) to be the definition of the ai, then α = x1
is equal to the right-hand side of (1). In other words, from the Gauss map, we can
derive the continued fraction expansion of α.
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(f) Assume that α = p/q is a rational number in [0, 1] and write xn = pn/qn where
pn, qn are coprime (by convention 0 = 0/1). Show that while xn 6= 0 the denomi-
nator qn is monotonically decreasing: qn+1 < qn. Show that there is some N such
that xn = 0 for n ≥ N .

(g) Say that a continued fraction [a1, . . .] has a tail of zeros if there is an N s.t. an = 0
for n ≥ N . Prove that α is rational iff its continued fraction [a1, . . .] has a tail of
zeros iff α is eventually fixed by g.

(h) Let α ∈ [0, 1) be a prime-period-2 periodic point of the Gauss map. Show that
α is the root of a quadratic polynomial with rational coefficients. What are the
coefficients in terms of the continued fraction expansion of α?

(i) Say that a point x = x1 is eventually periodic if there is some n such that xn is
a periodic point. For example, you showed above that all rationals are eventually
periodic. Fact (Lagrange): every eventually periodic irrational number is the root
of a quadratic polynomial with rational coefficients.

(h) [Maple] Compute the continued fraction expansion of α = e − 2. The answer was
known to Euler, whose 300th birthday was April 15, 2007.

Solution.

(a) Since u 7→ {u} maps [1, 2) to [0, 1) and the range of x 7→ 1/x contains [1, 2), the
range of g contains [0, 1) so it equals [0, 1).

(b) g(0) = 0.

(c) x is a fixed point of g iff x = g(x) iff x = 1/x− [1/x]. Let k = [1/x] be a positive

integer. Then x = 1/x − k or x2 + kx − 1 = 0. Thus x = −k±
√
k2+4

2
= k

2
×

(

−1±
√

1 + 4/k2
)

. For the ‘+‘ case,1 this equals x+ = k
2
×

(

2

k2
− 2

k4
+O( 1

k6
)
)

=
1
k
− 3

k3
+ O( 1

k5
). For the ‘−‘ case, it equals x− = −k

2
×

(

2 + 2

k2
− 6

k4
+O( 1

k6
)
)

=
−k − 1

k
+ 1

k3
+O( 1

k5
).

It is straightforward to verify that k+1 > 1/x+ > k so that [1/x+] = k as assumed.
On the other hand, x− 6∈ [0, 1) so it cannot be a fixed point of g. Thus, if we let
x∗k = x+ for each positive integer, then g(x∗k) = x∗k.

(d) Assume that x1 = α as in (Q10d). If a2 = 0, then aj = 0 for j ≥ 2, so α = 1/a1
and the claim easily follows. Otherwise, a2 ≥ 1 so

1/x1 = a1 +
1

a2 +
1

a3 +
1

a4 +
1

· · ·

, (0.4)

=⇒ g(x1) =
1

a2 +
1

a3 +
1

a4 +
1

· · ·

and a1 = [1/x1], (0.5)

where we used a2 ≥ 1 to conclude the fractional term in 1/x1 is less than 1.

The proof is now completed by a simple induction argument.

1Using the Maclaurin polynomial
√
1 + x = 1 + 1

2
x− 1

8
x2 +O(x3).



Dynamical Systems (MATH11027) Problem Sheet 1 6

(e) Let α ∈ [0, 1] be irrational,

α =
1

a1 +
1

a2 +
1

a3 +
1

... +
1

an +
1

· · ·

(6)

be the continued fraction expansion of α. We see that

1

α
= a1 +

1

a2 +
1

a3 +
1

... +
1

an +
1

· · ·

(0.7)

and ai ∈ Z
+ so

0 <
1

a2 +
1

a3 +
1

... +
1

an +
1

· · ·

< 1 (0.8)

whence, with x1 = α

a1 = [1/α] = [1/x1] (0.9)

x2 = g(x1) =
1

a2 +
1

a3 +
1

... +
1

an +
1

· · ·

(0.10)

The proof is now completed by induction.

(f) Let xn = pn/qn be a rational number in (0, 1]. The case xn = 1 is trivial, so we can
assume that 0 < pn < qn. We can write qn = spn + r for unique positive integers
s, r where 0 ≤ r < pn. Then

[

qn
pn

]

= s

{

qn
pn

}

=
r

pn
(0.11)

whence

xn+1 =
r

pn
=

pn+1

qn+1

(0.12)
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so qn+1 ≤ pn < qn.

Thus, the sequence of denominators qn is a strictly monotonic decreasing sequence
of positive integers, so it converges to 1 in at most N = q1 iterations, at which
point pn = 0, whence xn = 0 for all n ≥ N .

(g) Let us use part (d) to define the continued fraction expansion of any α ∈ [0, 1],
where we add the convention that [1/0] = 0. If α = x1 is rational, the previous
step showed that the continued fraction has an infinite tail of zeros because, by our
convention, xn is eventually zero. On the other hand, if xn is eventually zero, the
continued fraction has a tail of zeros, so then (1) shows that α is rational.

(h) Let x ∈ [0, 1] be a period 2 point of the Gauss map; we have seen that if x is
rational, then it cannot be a period 2 point unless x = 0, thus x is irrational.
Then, we see that

x = x1 =
1

a1 +
1

a2 +
1

a3 +
1

... +
1

an +
1

· · ·

(0.13)

which implies that

x = x3 =
1

a3 +
1

a4 +
1

a5 +
1

... +
1

an +
1

· · ·

, (0.14)

by the uniqueness of the coefficients, we see

a1 = a3, a2 = a4, an = an+2 (0.15)

whence

x =
1

a1 +
1

a2 + x

. (0.16)

If we manipulate this last expression, we get

a1x
2 + a1a2x− a2 = 0. (0.17)

Thus, for example, the golden ratio minus one, x = −1+
√
5

2
∈ [0, 1], is a root of

x2+x−1 = 0, so it has the continued fraction expansion with an = 1 for all n ≥ 1.
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(i) First, assume that x ∈ [0, 1] is a period k point for the Gauss map. By the same
arguments as in the previous step, we know that x is irrational and an = an+k for
all n ≥ 1. Therefore, we get

x =
1

a1 +
1

a2 +
1

a3 +
1

... +
1

ak + x

(0.18)

which implies that

x =
rx+ s

ux+ v
(0.19)

where r, s, u, v are positive integers determined by the an. Thus, x is a quadratic
irrational. In the general case, the coefficients a1, . . . , aK may be arbitrary, but
then an = an+k for all n ≥ K. A similar argument, as above, shows that x is again
a quadratic irrational.

(j)


