Q1) Consider the logistic map

$$
x_{n+1}=F\left(x_{n}\right)=\mu x_{n}\left(1-x_{n}\right), \quad \text { where } \mu>0 \quad \text { and } \quad x \in[0,1] .
$$

(a) Find the fixed points of this map. For which values of μ do they exist?
(b) Find a period-2 orbit of the map (i.e., find x_{0} and $x_{1} \neq x_{0}$ such that $x_{1}=F\left(x_{0}\right)$ and $F\left(x_{1}\right)=x_{0}$). For which values of μ does it exist?

Solution.

(a) x is a fixed point of F iff $x=F(x)$ iff $x=\mu x(1-x)$. Clearly $x=0$ is one solution, and the other satisfies $1=\mu(1-x)$ or $x=\frac{-1+\mu}{\mu}$. Since $0 \leq x \leq 1$, we require that $\mu \geq 1$ for the second fixed point to exist (when $\mu=1$ it coincides with $x=0$).
(b) x is a period-2 periodic point iff x is a fixed point of F^{2} iff $x=F(F(x))$. There are two obvious solutions: $x=0$ and $x=\mu x(1-x)$. If we divide the polynomial $F(F(x))-x=\mu^{2} x(1-x)(1-\mu x(1-x))-x$ by $\mu x\left(x-\frac{-1+\mu}{\mu}\right)$ we get $\mu^{2} x^{2}-\mu(\mu+$ 1) $x+\mu+1=0$. The quadratic root formula gives

$$
x_{ \pm}=\frac{\mu+1 \pm \sqrt{(\mu-3)(\mu+1)}}{2 \mu} .
$$

Clearly, these points are real only if $\mu \geq 3$ (and at $\mu=3$, they equal $2 / 3=$ $\left.\frac{-1+\mu}{\mu}\right|_{\mu=3}$, which is also a period-1 periodic point). For $\mu>3$, they are distinct from the period-1 points, so it must be the case that $F\left(x_{-}\right)=x_{+}, F\left(x_{+}\right)=x_{-}$.
Q2) Show that the discrete system

$$
x_{n+1}=\frac{1}{4}-\frac{1}{2 a}-a^{2} x_{n}^{2}
$$

is equivalent to the logistic map with $\mu=a$. (Hint: the variable transformation relating the two systems is affine; i.e., $y_{n}=\alpha x_{n}+\beta$.)
Solution. Let $y=\alpha x+\beta$ or $x=\frac{y-\beta}{\alpha}$ and let $f(x)=c-a^{2} x^{2}$ where $c=\frac{1}{4}-\frac{1}{2 a}$, $g(y)=a y\left(1-y^{2}\right)$. We want $x_{n+1}=f\left(x_{n}\right)$ to imply that $y_{n+1}=g\left(y_{n}\right)$. This leads to

$$
\begin{aligned}
y_{n+1} & =\alpha x_{n+1}+\beta=\alpha c+\beta-a^{2} \alpha x_{n}^{2}, \\
& =\alpha c+\beta-\frac{a^{2}}{\alpha^{2}}\left(y_{n}^{2}-2 \beta y_{n}+\beta^{2}\right), \\
& =\alpha c+\beta-\frac{a^{2} \beta^{2}}{\alpha}+\frac{2 a^{2} \beta}{\alpha} y_{n}-\frac{a^{2}}{\alpha} y_{n}^{2}
\end{aligned}
$$

and we want $y_{n+1}=a y_{n}\left(1-y_{n}\right)$ so

$$
\frac{a^{2}}{\alpha}=a \Longrightarrow \alpha=a, \quad 2 a \beta=a \Longrightarrow \beta=1 / 2, \quad a c+1 / 2-a / 4=0 \Longrightarrow c=\frac{1}{4}-\frac{1}{2 a} .
$$

Thereofore the equations are consistent and $y=a x+1 / 2$.
Remark. Let us formulate the problem in terms of maps. Let $h(x)=\alpha x+\beta$ and let h^{-1} be the inverse of h. We are seeking a solution to the equation

$$
g(y)=h \circ f \circ h^{-1}(y) \quad \text { or } \quad g \circ h=h \circ f .
$$

The first equation says that g is conjugate to f by the conjugacy h. Maps are conjugate iff the corresponding dynamical systems can be obtained from one another by a change of coordinates - the change of coordinates map being the conjugacy.

Q3) Show that the map

$$
\theta_{n+1} \equiv 2 \theta_{n} \quad \bmod 1
$$

can be transformed into the logistic map with $\mu=4$ and $0 \leq x_{n} \leq 1$ by the change of variable $x_{n}=\sin ^{2}\left(\pi \theta_{n}\right)$. Find x_{0} such that $x_{8}=x_{0}$ but $x_{1}, \ldots, x_{7} \neq x_{0}$.
Solution. 1. We want to show that $\theta_{n+1}=2 \theta_{n} \bmod 1$ and $x_{n}=\sin ^{2}\left(\pi \theta_{n}\right)$ implies $x_{n+1}=4 x_{n}\left(1-x_{n}\right)$. If $\theta_{n+1}=2 \theta_{n} \bmod 1$ and $x_{n}=\sin ^{2}\left(\pi \theta_{n}\right)$, then

$$
\begin{aligned}
\sin ^{2}\left(\pi \theta_{n+1}\right) & =\sin ^{2}\left(2 \pi \theta_{n}\right) \\
& =4 \sin ^{2}\left(\pi \theta_{n}\right) \cos ^{2}\left(\pi \theta_{n}\right), \\
& =4 \sin ^{2}(\pi \theta)\left(1-\sin ^{2}\left(\pi \theta_{n}\right)\right) \\
& =4 x_{n}\left(1-x_{n}\right), \\
& =x_{n+1} .
\end{aligned}
$$

Solution 2. Let $f(x)=4 x(1-x), g(\theta)=2 \theta \bmod 1$ and $h(\theta)=\sin ^{2}(\pi \theta)$. We want to show that

$$
h \circ g=f \circ h .
$$

Now

$$
\begin{aligned}
h \circ g(\theta) & =\sin ^{2}(2 \pi \theta) \\
& =4 \sin ^{2}(\pi \theta)\left(1-\sin ^{2}(\pi \theta)\right), \\
& =4 h(\theta)(1-h(\theta)), \\
& =f \circ h(\theta) .
\end{aligned}
$$

Note that the calulation comes down to basically the same thing, except that in the second case we always stay in the θ coordinate system.

To find a period- 8 orbit of the logistic map, observe that if $\theta_{n}=\theta_{0}$, then $x_{n}=x_{0}$. Therefore, we see that the period- n orbits of the times- 2 map are given by $\theta_{n}=$ $2^{n} \theta_{0}=\theta_{0} \bmod 1$ or $\theta_{0}=\frac{k}{2^{n-1}} \bmod 1$ for some integer k. In the case $n=0$, we get $\theta_{0}=\frac{k}{255} \bmod 1$ or $\theta_{0}=0,1 / 255,2 / 255, \ldots, 254 / 255 \bmod 1$. We see that if $\theta_{0}=1 / 255$, then $\theta_{0}, \cdots, \theta_{7}$ are distinct (they have increasing denominators all less than 255). Also, $k / 255=-k / 255 \bmod 1$ iff $k / 255=0,1 / 2 \bmod 1$. Since our points have an even denominator (except for the θ_{0}), we see that no point on this period-8 orbit is paired with its minus counterpart. Therefore the map $\theta_{k} \mapsto \sin ^{2}\left(\pi \theta_{k}\right)$ is $1-1$ on this periodic orbit. Since this periodic orbit has prime period $8, x_{0}=\sin ^{2}\left(\frac{\pi}{255}\right)$ is a prime-period-8 periodic point of the logistic map.
(Q4) Find the Poincaré map of the autonomous system

$$
\ddot{x}+2 \dot{x}+5 x=0
$$

for $\Sigma=\{(x, y)=(x, 0), x>0\}$
Solution.
The general solution to the DE with ICs $(x(0)=a, \dot{x}(0)=0)$ is $x(t)=a e^{-t}(\cos (2 t)+$ $\left.\frac{1}{2} \sin (2 t)\right), y(t)=\dot{x}(t)=-\frac{5}{2} a e^{-t} \sin (2 t)$. Thus, $y(t)=0$ for the first time at $t=\pi / 2$ (when $x<0$) and then at $t=\pi$ (when $x>0$). Thus, the Poincaré map is $P(a)=$ $x(\pi)=a e^{-\pi}$.
(Q5) Find the Poincaré map of the periodically forced system $\ddot{x}+x=\cos 2 t$.
Solution. Here, the phase space is $\{(x, y=\dot{x}, t \bmod \pi)\}=\mathbb{R}^{2} \times S^{1}$. The Poincaré map is from $\Sigma=\{t \equiv 0\}$ to itself. The general solution is $x(t)=(a+1 / 3) \cos t+b \sin t-\frac{1}{3} \cos (2 t)$, from $\Sigma=\left\{\cos t-(a+1 / 3) \sin t+\frac{2}{3} \sin (2 t)\right.$. Then $P(a, b)=(x(\pi), y(\pi))=\left(-a-\frac{2}{3},-b\right)$.
(Q6) If $\left\{x_{n}\right\}$ satisfies the recurrence relation

$$
x_{n+1}=\lambda x_{n} e^{-x_{n}}
$$

where $0<\lambda<1$ and $x_{0}>0$, show that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Find the fixed point different from 0 which exists for $\lambda>1$.
Solution. Let $g(x)=\lambda x e^{-x}$. If $0<\lambda<1$, and $x>0$, then $0<g(x)<x$. Therefore, the sequence x_{n} is monotone decreasing and bounded below by 0 , hence it converges to a limit a. Since $x_{n+1}=g\left(x_{n}\right)$ also converges to a, we get that $a=g(a)$. Therefore, $a=\lambda a e^{-a}$ or $a=0, a=\ln \lambda$. Since $\lambda<1$, we see that $a=0$. When $\lambda>1$, we have the extra f.p. $\ln \lambda$.
(Q7) Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Compute $e^{t A}$. What does this imply for the orbits of the linear system $\dot{\mathrm{x}}=A \mathrm{x}$?

Solution.

A has eigenvectors $v_{+}=[1,1]^{\prime}$ and $v_{-}=[1,-1]^{\prime}$ with eigenvalues 1 and -1 respectively. Therefore

$$
\begin{aligned}
e^{t A} & =P e^{t \Lambda} P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \exp \left(t\left[\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right] \times \frac{1}{2} \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{ll}
-1 & -1 \\
-1 & 1
\end{array}\right] \times \frac{1}{-2} \\
& =\left[\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right]
\end{aligned}
$$

where $\cosh t=\left(e^{t}+e^{-t}\right) / 2$ and $\sinh t=\left(e^{t}-e^{-t}\right) / 2$.
Except along the line $E^{-}=\mathbb{R} v_{-}$, all orbits will diverge to infinity. Orbits on the stable subspace E^{-}will converge to 0 .
(Q8) Consider the one-dimensional map $x_{n+1}=F\left(x_{n}\right)$, where $F(x)=x-h x^{3}$.
(a) Compute F^{2}, the second iterate of the map.
(b) Deduce that $x=\sqrt{2 / h}$ belongs to a period-2 orbit.
(c) What is the other point of this periodic orbit?

Solution.

(a) $F(F(x))=F\left(x-h^{3}\right)=\left(x-h x^{3}\right)-h\left(x-h x^{3}\right)^{3}=x-2 h x^{3}+3 h^{3} x^{7}+h^{4} x^{9}$.
(b) We see that $x=F(F(x))$ iff $x=0$ or $0=-2+3 h x^{2}-3 h^{2} x^{4}+h^{3} x^{6}$. Substitute $u=h x^{2}$ gives $0=-2+3 u-3 u^{2}+u^{3}$. From the constant term on guesses that $\pm 1, \pm 2$ may be roots, and by substitution $u=2$ is a root. Factoring yields a quadratic with roots $\frac{1 \pm \sqrt{-3}}{2}$. Therefore, the only real points x s.t. $x=F(F(x))$ are $x=0, \pm \sqrt{\frac{2}{h}}$.
(c) Since $x=0$ is the only fixed point of F, we must have that $F\left(\sqrt{\frac{2}{h}}\right)=-\sqrt{\frac{2}{h}}$ and $F\left(-\sqrt{\frac{2}{h}}\right)=\sqrt{\frac{2}{h}}$.
(Q9) Consider the system $x_{n+1}=-\frac{2}{3} x_{n}+y_{n}, \quad y_{n+1}=\frac{1}{3}\left(-4 x_{n}+5 y_{n}\right)$, with $x_{0}=\alpha, y_{0}=\beta$. Show that $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$ as $n \rightarrow \infty$, for any choice of α and β. Show also that the convergence is faster if $\alpha=\beta$ than if $\alpha \neq \beta$.
Solution. The eigenvectors/values of A are

$$
2 / 3,\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad 1 / 3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The general solution to the difference equation is therefore

$$
\mathbf{x}_{n}=a(2 / 3)^{n}\left[\begin{array}{l}
3 \\
4
\end{array}\right]+b(1 / 3)^{n}\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

where \mathbf{x}_{0} has components a and b along the respective eigenvectors. Clearly $\mathbf{x}_{n} \rightarrow 0$ as $n \rightarrow \infty$. In general $\left|\mathbf{x}_{n}\right| \sim 5|a|(2 / 3)^{n}$, unless $a=0$, when $\left|\mathbf{x}_{n}\right|=\sqrt{2}|b|(1 / 3)^{n}$, which converges to 0 faster.
Q10) For a positive real number x let $[x]$ be the floor of x-the largest integer that is less than or equal to $x-$ and let $\{x\}=x-[x]$ be the fractional part of x. The Gauss map is defined as $g(x)=\left\{\frac{1}{x}\right\}$ if $x \neq 0$ and $g(0)=0$. Define a discrete DS

$$
x_{n+1}=g\left(x_{n}\right)
$$

(a) Show that the range of g is $[0,1)$.
(b) Show that g has a fixed point at $x=0$.
(c) Show that for each positive integer k there is a fixed point x_{k}^{*} of g such that $x_{k}^{*}=\frac{1}{k}-\frac{1}{k^{3}}+\cdots$ for $k \geq 2$. [Hint: to see the plausibility, draw the graphs of $y=g(x)$ and $y=x$.]
(d) Let $a_{i}, i=1, \ldots$ be non-negative integers which satisfy the property that $a_{i}=0$ implies $a_{j}=0$ for all $j \geq i$. Let $\alpha=\left[a_{1}, \ldots\right]$ denote the continued fraction

$$
\begin{equation*}
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}} . \tag{1}
\end{equation*}
$$

It is a fact that every irrational real number $\alpha \in[0,1)$ has a unique continued fraction expansion of this form. Assuming this fact, prove that if $x_{1}=\alpha$ and $\forall n \geq 1$

$$
\begin{equation*}
x_{n+1}=g\left(x_{n}\right) \tag{2}
\end{equation*}
$$

then $\forall n \geq 1$

$$
\begin{equation*}
a_{n}=\left[1 / x_{n}\right] . \tag{3}
\end{equation*}
$$

(e) Conversely, argue that if we take (2-3) to be the definition of the a_{i}, then $\alpha=x_{1}$ is equal to the right-hand side of (1). In other words, from the Gauss map, we can derive the continued fraction expansion of α.
(f) Assume that $\alpha=p / q$ is a rational number in $[0,1]$ and write $x_{n}=p_{n} / q_{n}$ where p_{n}, q_{n} are coprime (by convention $0=0 / 1$). Show that while $x_{n} \neq 0$ the denominator q_{n} is monotonically decreasing: $q_{n+1}<q_{n}$. Show that there is some N such that $x_{n}=0$ for $n \geq N$.
(g) Say that a continued fraction $\left[a_{1}, \ldots\right]$ has a tail of zeros if there is an N s.t. $a_{n}=0$ for $n \geq N$. Prove that α is rational iff its continued fraction $\left[a_{1}, \ldots\right]$ has a tail of zeros iff α is eventually fixed by g.
(h) Let $\alpha \in[0,1)$ be a prime-period- 2 periodic point of the Gauss map. Show that α is the root of a quadratic polynomial with rational coefficients. What are the coefficients in terms of the continued fraction expansion of α ?
(i) Say that a point $x=x_{1}$ is eventually periodic if there is some n such that x_{n} is a periodic point. For example, you showed above that all rationals are eventually periodic. Fact (Lagrange): every eventually periodic irrational number is the root of a quadratic polynomial with rational coefficients.
(h) [Maple] Compute the continued fraction expansion of $\alpha=e-2$. The answer was known to Euler, whose 300th birthday was April 15, 2007.

Solution.

(a) Since $u \mapsto\{u\}$ maps $[1,2)$ to $[0,1)$ and the range of $x \mapsto 1 / x$ contains $[1,2)$, the range of g contains $[0,1)$ so it equals $[0,1)$.
(b) $g(0)=0$.
(c) x is a fixed point of g iff $x=g(x)$ iff $x=1 / x-[1 / x]$. Let $k=[1 / x]$ be a positive integer. Then $x=1 / x-k$ or $x^{2}+k x-1=0$. Thus $x=\frac{-k \pm \sqrt{k^{2}+4}}{2}=\frac{k}{2} \times$ $\left(-1 \pm \sqrt{1+4 / k^{2}}\right)$. For the ' $+^{\text {' case, }}{ }^{1}$ this equals $x_{+}=\frac{k}{2} \times\left(\frac{2}{k^{2}}-\frac{2}{k^{4}}+O\left(\frac{1}{k^{6}}\right)\right)=$ $\frac{1}{k}-\frac{3}{k^{3}}+O\left(\frac{1}{k^{5}}\right)$. For the ' ${ }^{\prime}$ ' case, it equals $x_{-}=-\frac{k}{2} \times\left(2+\frac{2}{k^{2}}-\frac{6}{k^{4}}+O\left(\frac{1}{k^{6}}\right)\right)=$ $-k-\frac{1}{k}+\frac{1}{k^{3}}+O\left(\frac{1}{k^{5}}\right)$.
It is straightforward to verify that $k+1>1 / x_{+}>k$ so that $\left[1 / x_{+}\right]=k$ as assumed. On the other hand, $x_{-} \notin[0,1)$ so it cannot be a fixed point of g. Thus, if we let $x_{k}^{*}=x_{+}$for each positive integer, then $g\left(x_{k}^{*}\right)=x_{k}^{*}$.
(d) Assume that $x_{1}=\alpha$ as in (Q10d). If $a_{2}=0$, then $a_{j}=0$ for $j \geq 2$, so $\alpha=1 / a_{1}$ and the claim easily follows. Otherwise, $a_{2} \geq 1$ so

$$
\begin{gather*}
1 / x_{1}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\frac{1}{\cdots}}}} \tag{0.4}\\
\Longrightarrow g\left(x_{1}\right)=\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\frac{1}{\ldots}}}} \text { and } a_{1}=\left[1 / x_{1}\right], \tag{0.5}
\end{gather*}
$$

where we used $a_{2} \geq 1$ to conclude the fractional term in $1 / x_{1}$ is less than 1 . The proof is now completed by a simple induction argument.
(e) Let $\alpha \in[0,1]$ be irrational,

$$
\begin{equation*}
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{\ldots}}}}}} \tag{6}
\end{equation*}
$$

be the continued fraction expansion of α. We see that

$$
\begin{equation*}
\frac{1}{\alpha}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{\ldots}}}}} \tag{0.7}
\end{equation*}
$$

and $a_{i} \in \mathbb{Z}^{+}$so

$$
\begin{equation*}
0<\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{\cdots}}}}}<1 \tag{0.8}
\end{equation*}
$$

whence, with $x_{1}=\alpha$

$$
\begin{align*}
& a_{1}=[1 / \alpha]=\left[1 / x_{1}\right] \tag{0.9}\\
& x_{2}=g\left(x_{1}\right)=\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{\ldots}}}}} \tag{0.10}
\end{align*}
$$

The proof is now completed by induction.
(f) Let $x_{n}=p_{n} / q_{n}$ be a rational number in $(0,1]$. The case $x_{n}=1$ is trivial, so we can assume that $0<p_{n}<q_{n}$. We can write $q_{n}=s p_{n}+r$ for unique positive integers s, r where $0 \leq r<p_{n}$. Then

$$
\begin{equation*}
\left[\frac{q_{n}}{p_{n}}\right]=s \quad\left\{\frac{q_{n}}{p_{n}}\right\}=\frac{r}{p_{n}} \tag{0.11}
\end{equation*}
$$

whence

$$
\begin{equation*}
x_{n+1}=\frac{r}{p_{n}}=\frac{p_{n+1}}{q_{n+1}} \tag{0.12}
\end{equation*}
$$

so $q_{n+1} \leq p_{n}<q_{n}$.
Thus, the sequence of denominators q_{n} is a strictly monotonic decreasing sequence of positive integers, so it converges to 1 in at most $N=q_{1}$ iterations, at which point $p_{n}=0$, whence $x_{n}=0$ for all $n \geq N$.
(g) Let us use part (d) to define the continued fraction expansion of any $\alpha \in[0,1]$, where we add the convention that $[1 / 0]=0$. If $\alpha=x_{1}$ is rational, the previous step showed that the continued fraction has an infinite tail of zeros because, by our convention, x_{n} is eventually zero. On the other hand, if x_{n} is eventually zero, the continued fraction has a tail of zeros, so then (1) shows that α is rational.
(h) Let $x \in[0,1]$ be a period 2 point of the Gauss map; we have seen that if x is rational, then it cannot be a period 2 point unless $x=0$, thus x is irrational. Then, we see that

$$
\begin{equation*}
x=x_{1}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{2}}}}} . \frac{1}{1}} \tag{0.13}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
x=x_{3}=\frac{1}{a_{3}+\frac{1}{a_{4}+\frac{1}{a_{5}+\frac{1}{\vdots+\frac{1}{a_{n}+\frac{1}{\ldots}}}}}}, \tag{0.14}
\end{equation*}
$$

by the uniqueness of the coefficients, we see

$$
\begin{equation*}
a_{1}=a_{3}, a_{2}=a_{4}, a_{n}=a_{n+2} \tag{0.15}
\end{equation*}
$$

whence

$$
\begin{equation*}
x=\frac{1}{a_{1}+\frac{1}{a_{2}+x}} . \tag{0.16}
\end{equation*}
$$

If we manipulate this last expression, we get

$$
\begin{equation*}
a_{1} x^{2}+a_{1} a_{2} x-a_{2}=0 . \tag{0.17}
\end{equation*}
$$

Thus, for example, the golden ratio minus one, $x=\frac{-1+\sqrt{5}}{2} \in[0,1]$, is a root of $x^{2}+x-1=0$, so it has the continued fraction expansion with $a_{n}=1$ for all $n \geq 1$.
(i) First, assume that $x \in[0,1]$ is a period k point for the Gauss map. By the same arguments as in the previous step, we know that x is irrational and $a_{n}=a_{n+k}$ for all $n \geq 1$. Therefore, we get

$$
\begin{equation*}
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\vdots+\frac{1}{a_{k}+x}}}}} \tag{0.18}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
x=\frac{r x+s}{u x+v} \tag{0.19}
\end{equation*}
$$

where r, s, u, v are positive integers determined by the a_{n}. Thus, x is a quadratic irrational. In the general case, the coefficients a_{1}, \ldots, a_{K} may be arbitrary, but then $a_{n}=a_{n+k}$ for all $n \geq K$. A similar argument, as above, shows that x is again a quadratic irrational.

