Please hand in answers no later than Friday 26th November.
(Question 1) Let $f:[0,1] \rightarrow[0,1]$ have the graph below. Prove that, for every $n \geq 1, f$ has a prime period- n periodic orbit.

Figure .0.1: A map of $[0,1]$ with prime periodic points of all orders.

Solution.

We shall use Sharkovskii's theorem. Recall this theorem:
Define the an ordering \triangleleft on the positive integers by
$3 \triangleleft 5 \triangleleft 7 \triangleleft \cdots \triangleleft 2 \cdot 3 \triangleleft 2 \cdot 5 \triangleleft 2 \cdot 7 \triangleleft \cdots \triangleleft 2^{n} \cdot 3 \triangleleft 2^{n} 5 \triangleleft 2^{n} 7 \triangleleft \cdots \cdots \cdot \triangleleft 2^{n} \triangleleft \cdots \triangleleft 2^{2} \triangleleft 2^{1} \triangleleft 2^{0}$,
where we enumerate all odd primes in increasing order, then twice the odd primes, and so on, and finally all powers of 2 .
Recall that a point x has prime period n if it is a fixed point of f^{n} andnot of f^{k} for any $k<n$.
Sharkovskii's Theorem. Let $f:[0,1] \rightarrow[0,1]$ be a continuous map. If f has a periodic point of prime period n, then f has a periodic point of prime period k for all $n \triangleleft k$.

We see that it suffices to prove that f has a prime period- 3 orbit to prove that it has a prime period- n orbit for all n.
Let p be the unique point in $I=[0,1]$ where $f(p)=1$. Let $I_{0}=[0, p]$ and $I_{1}=[p, 1]$. Since f is continuous
(*)

$$
f\left(I_{0}\right) \supset I_{0}, I_{1} \quad f\left(I_{1}\right) \supset I_{0}, I_{1} .
$$

We want to specify an itinerary which a period-3 point might follow. Consider the itinerary

$$
I_{0} \rightarrow I_{1} \rightarrow I_{1} \rightarrow I_{0}
$$

Claim: If $z \in I_{0}$ is a period-3 point that follows the itinerary $\left({ }^{* *}\right)$, then z is a prime period-3 point. Moreover, such a point z exists.

Check: It suffices to verify that z is not a fixed point of f. If $z=f(z)$, then $z \in I_{0}, f(z) \in$ I_{1} which forces $z=p$. But $f(p)=1 \neq p$. This proves the claim.
Given $\left({ }^{*}\right)$, the intermediate value theorem (IVT) says that there is an interval $K_{0} \subset I_{1}$ such that $f\left(K_{0}\right)=I_{0}$. Given $\left({ }^{*}\right)$, by the IVT there is an interval $K_{1} \subset I_{1}$ such that $f\left(K_{1}\right)=K_{0}$. Finally, given $\left(^{*}\right)$, by the IVT there is a $K_{2} \subset I_{0}$ such that $f\left(K_{2}\right)=K_{1}$. Then

$$
f^{3}\left(K_{2}\right)=f^{2}\left(K_{1}\right)=f\left(K_{0}\right)=I_{0} \supset K_{2} .
$$

But therefore, as a consequence of the IVT, we know that K_{2} contains a fixed point, z, of f^{3}. Since $z \in K_{2} \subset I_{0}, f(z) \in K_{1} \subset I_{1}, f^{2}(z) \in K_{0} \subset I_{1}$ and $f^{3}(z)=z \in K_{2} \subset I_{0}$, the period-3 point z follows the itinerary $\left({ }^{* *}\right)$. Therefore z is a prime period-3 point.
(Question 2) Consider the \mathbb{R}^{2} map represented as

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right) \tag{0.1}
\end{equation*}
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
y+\nu \\
y^{2}-x^{2}
\end{array}\right],
$$

and ν is a real-valued parameter.
(a) Find the fixed points of (0.1) in terms of ν.
(b) The map (0.1) undergoes a Hopf bifurcation when the eigenvalues of the Jacobian matrix of derivatives of \mathbf{F} are $\exp (\pm i \sigma)$, where $\sigma \in(0, \pi)$. Find the value of ν, and the corresponding fixed point, at which the map undergoes a Hopf bifurcation.

Solution.

(a) (x, y) is a fixed point of \mathbf{F} iff $x=y+\nu$ and $y=y^{2}-x^{2}$ iff $x=y+\nu$ and $y=y^{2}-(y+\nu)^{2}=-2 \nu y-\nu^{2}$ iff $y=-\frac{\nu^{2}}{1+2 \nu}$ and $x=\frac{1+\nu}{1+2 \nu} \times \nu$, where $\nu \neq-1 / 2$.
(b) We compute that

$$
d \mathbf{F}_{(x, y)}=\left[\begin{array}{cc}
0 & 1 \\
-2 x & 2 y
\end{array}\right]
$$

which has trace $2 y$ and determinant $2 x$. Its eigenvalues are therefore

$$
\lambda=y \pm \sqrt{y^{2}-2 x}=\frac{\nu^{2} \pm \sqrt{\nu^{4}-4 \nu^{3}-6 \nu^{2}-2 \nu}}{1+2 \nu}
$$

Hence, if λ is properly complex, then its real part is y and imaginary part is $\pm \sqrt{2 x-y^{2}}$ (since $y^{2}-2 x<0$). In order for λ to lie on the unit circle, we need that

$$
\begin{aligned}
|\lambda|^{2}=1 & \Longleftrightarrow & y^{2}+\left|y^{2}-2 x\right| & =y^{2}+\left(2 x-y^{2}\right)=1 \\
& \Longleftrightarrow & x & =1 / 2, y=1 / 2-\nu .
\end{aligned}
$$

To determine ν, let us solve

$$
x=1 / 2 \quad \Longleftrightarrow \quad \nu^{2}+\nu=1 / 2+\nu \quad \Longleftrightarrow \quad \nu=\frac{ \pm 1}{\sqrt{2}},
$$

whence $y=1 / 2 \mp 1 / \sqrt{2}$.
Therefore, we find that there are two solutions

$$
\nu=\frac{1}{\sqrt{2}}, x=\frac{1}{2}, y=x-\nu, \quad \nu=-\frac{1}{\sqrt{2}}, x=\frac{1}{2}, y=x-\nu .
$$

In the former case, $y^{2}<2 x=1$ so $\lambda=\exp (i \sigma), \sigma \in(0, \pi)$ lies on the unit circle; in the latter case, $y^{2}>2 x$ so λ is real. Therefore a Hopf bifurcation can only occur in the former case.

