Please hand in answers no later than Friday 5th November.
(Question 1) Find the fixed points of the dynamical system $\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right)$ where

$$
\mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \text { and } \quad \mathbf{F}(\mathbf{x})=\left(\begin{array}{c}
x^{2} \cos \pi y \\
y^{3} \\
x z^{2}+y
\end{array}\right)
$$

and determine their stability.

Solution.

The fixed points satisfy $\mathbf{x}=\mathbf{F}(\mathbf{x})$ which means

$$
\begin{align*}
& x=x^{2} \cos (\pi y), \tag{0.1}\\
& y=y^{3}, \tag{0.2}\\
& z=x z^{2}+y . \tag{0.3}
\end{align*}
$$

Equation 0.2 says that $y=0$ or $y= \pm 1$. Plugging this into equation 0.1 says that $x=x^{2}$ $(y=0)$ or $x=-x^{2}(y= \pm 1)$. Therefore $x=0,1$ and $y=0$ or $x=0,-1$ and $y= \pm 1$.
Plugging $x=0$ into equation 0.3 yields $z=y=0, \pm 1$. Plugging $x=1$ and $y=0$ into equation 0.3 yields $z^{2}=z$ or $z=0,1$; plugging $x=-1$ and $y= \pm 1$ into equation 0.3 yields $z^{2}+z-y=0$. Since the discriminant is $1+4 y$, this yields non-real solutions when $y=-1$ and the real solutions $z=\frac{-1 \pm \sqrt{5}}{2}$ when $y=1$. In total, we get the following 7 real fixed points

$$
x=y=z=0 ; \quad x=0, y=z= \pm 1 ; \quad x=1, y=0, z=0,1,
$$

and

$$
x=-1, y=1, z=\frac{-1 \pm \sqrt{5}}{2}
$$

The derivative of \mathbf{F} at \mathbf{x} is computed to be

$$
\mathbf{D F}=\left[\begin{array}{ccc}
2 x \cos (\pi y) & -x^{2} \pi \sin (\pi y) & 0 \\
0 & 3 y^{2} & 0 \\
z^{2} & 1 & 2 x z
\end{array}\right]
$$

When $x=0$, we see that $\mathbf{D F}$ is lower triangular with diagonal entries $0,3 y^{2}, 0$, so the point $(0,0,0)$ is stable (all eigenvalues of DF lie inside unit circle) while the points $(0, \pm 1, \pm 1)$ are both unstable (there is an eigenvalue outside the unit circle). When $x=1, y=0$, so $\mathbf{D F}$ is lower triangular with diagonal elements $2,0,2 z$. Therefore $(1,0,0)$ and $(1,0,1)$ are also unstable. When $x=-1, y=1$, then $\mathbf{D F}$ is lower triangular with diagonal entries $2,3,-2 z$ which shows it to be unstable.
In summary: only $(0,0,0)$ is a stable fixed point.
(Question 2) Consider the relation

$$
\begin{equation*}
x_{n+1}=x_{n}-x_{n-1}+2\left(2 x_{n-1}-x_{n}\right)^{3} \text {, } \tag{0.4}
\end{equation*}
$$

where $x_{n} \in \mathbb{R}$.
(a) Introduce $y_{n}=x_{n-1}$ and write this relation as a dynamical system $\mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}\right)$ where \mathbf{f} is a map from \mathbb{R}^{2} to itself.
(b) Find the fixed points of \mathbf{f}.
(c) Can the corresponding linearized map determine the stability of the fixed points?
(d) Let $z_{n}=x_{n-1}+\epsilon x_{n}$ for some $\epsilon \in \mathbb{C}$. Show that, by choosing ϵ appropriately, the system (0.4) may expressed as

$$
z_{n+1}=\alpha z_{n}+\beta_{1} z_{n}^{3}+\beta_{2} z_{n}^{2} \bar{z}_{n}+\beta_{3} z_{n} \bar{z}_{n}^{2}+\beta_{4} \bar{z}_{n}^{3}
$$

and calculate the complex-valued constants $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}.
(e) Explain briefly (without performing any calculations) how the system may rewritten in terms of a new variable ζ_{n} as

$$
\zeta_{n+1}=\alpha \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+O\left(\left|\zeta_{n}\right|^{4}\right) .
$$

Determine b. [NB: it is not necessary to replicate the calculations in the notes. You may use the results.]
(f) Using (iv), show how the stability of the origin depends on b / ϵ and thereby comment upon the stability of the origin for the system (0.4).

Solution.

(a) We get

$$
\begin{aligned}
x_{n+1} & =x_{n}-y_{n}+2\left(2 y_{n}-x_{n}\right)^{3}, \\
y_{n+1} & =x_{n},
\end{aligned}
$$

so that

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
x-y+2(2 y-x)^{3} \\
x
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(b) For a fixed point of \mathbf{f} we must have $x=y$, whence $x=2 x^{3}$ or $x=0$ or $\pm \frac{1}{\sqrt{2}}$.
(c) Since

$$
\text { Df }=\left[\begin{array}{cc}
1-6(2 y-x)^{2} & -1+12(2 y-x)^{2} \\
1 & 0
\end{array}\right]
$$

we see that

$$
\mathbf{D} \mathbf{f}_{x=y=0}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{D f}_{x=y= \pm \frac{1}{\sqrt{2}}}=\left[\begin{array}{cc}
-2 & 5 \\
1 & 0
\end{array}\right] .
$$

The former has complex eigenvalues $\lambda=\lambda_{ \pm}=\frac{1 \pm \sqrt{-3}}{2}$ which are on the unit circle (and $\lambda^{3}=-1$), while the latter has determinant -5 , so the second and third fixed points must be unstable.
(d) We want $z=\langle\mathbf{t}, \mathbf{x}\rangle$ where \mathbf{t} is an eigenvector of $\mathbf{D} \mathbf{f}^{T}$ (transpose) belonging to the eigenvalue λ. We see that $\mathbf{t}=[-\lambda, 1]^{T}$ is such an eigenvector.
Therefore, let $z=\langle\mathbf{t}, \mathbf{x}\rangle=y-\lambda x$ so $z_{n}=x_{n-1}-\lambda x_{n}=y_{n}-\lambda x_{n}$, where $\lambda=\frac{1-\sqrt{-3}}{2}$. This gives the value $\epsilon=-\lambda$. Then, we see that

$$
z=\left(y-\frac{1}{2} x\right)+i \frac{\sqrt{3}}{2} x, \quad z+\bar{z}=2 y-x .
$$

If we compute

$$
\begin{align*}
z_{n+1} & =y_{n+1}-\lambda x_{n+1}, \\
& =x_{n}-\lambda\left(x_{n}-y_{n}+2\left(2 y_{n}-x_{n}\right)^{3}\right), \\
& =(1-\lambda) x_{n}+\lambda y_{n}-2 \lambda\left(z_{n}+\bar{z}_{n}\right)^{3}, \\
& =\lambda z_{n}-2 \lambda z_{n}^{3}-6 \lambda z_{n}^{2} \bar{z}_{n}-6 \lambda z_{n} \bar{z}_{n}^{2}-2 \lambda \bar{z}_{n}^{3} . \tag{0.5}
\end{align*}
$$

We have used the fact that $\lambda z=-\lambda^{2} x+\lambda y=(1-\lambda) x+\lambda y$ since $\lambda^{2}-\lambda+1=0$.
(e) Since λ is not a cube or quartic root of unity, we would define $\zeta=h(z)=z+$ $\alpha z^{3}+\beta z^{2} \bar{z}+\gamma z \bar{z}^{2}+\delta \bar{z}^{3}$ for an appropriate choice of α, γ, δ to kill the cubic terms in the DS of equation (0.5). However, we cannot kill the $z^{2} \bar{z}$ term, so we would get $\zeta_{n+1}=\lambda \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+O\left(\left|\zeta_{n}\right|^{4}\right)$ where b is just the coefficient on the $z^{2} \bar{z}$ term in (0.5):

$$
b=-6 \lambda .
$$

(f) We see that $\left|\zeta_{n+1}\right|^{2}=\left|\zeta_{n}\right|^{2}+2 h\left|\zeta_{n}\right|^{3}+\cdots$ where $2 h=\lambda \bar{b}+\bar{\lambda} b$ or $h=\operatorname{Re}(\bar{\lambda} b)$. Therefore, $h=-6$. This shows that the origin is a stable fixed point for $\left({ }^{*}\right)$.

