Please hand in answers no later than Friday 5th November.

(Question 1) Find the fixed points of the dynamical system $\mathbf{x}_{n+1} = \mathbf{F}(\mathbf{x}_n)$ where

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 and $\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x^2 \cos \pi y \\ y^3 \\ xz^2 + y \end{pmatrix}$,

and determine their stability.

Solution.

The fixed points satisfy $\mathbf{x} = \mathbf{F}(\mathbf{x})$ which means

$$x = x^2 \cos(\pi y),\tag{0.1}$$

$$y = y^3$$
, (0.2)

$$z = xz^2 + y. ag{0.3}$$

Equation 0.2 says that y = 0 or $y = \pm 1$. Plugging this into equation 0.1 says that $x = x^2$ (y = 0) or $x = -x^2$ $(y = \pm 1)$. Therefore x = 0, 1 and y = 0 or x = 0, -1 and $y = \pm 1$.

Plugging x=0 into equation 0.3 yields $z=y=0,\pm 1$. Plugging x=1 and y=0 into equation 0.3 yields $z^2=z$ or z=0,1; plugging x=-1 and $y=\pm 1$ into equation 0.3 yields $z^2+z-y=0$. Since the discriminant is 1+4y, this yields non-real solutions when y=-1 and the real solutions $z=\frac{-1\pm\sqrt{5}}{2}$ when y=1. In total, we get the following 7 real fixed points

$$x = y = z = 0;$$
 $x = 0, y = z = \pm 1;$ $x = 1, y = 0, z = 0, 1,$

and

$$x = -1, y = 1, z = \frac{-1 \pm \sqrt{5}}{2}.$$

The derivative of \mathbf{F} at \mathbf{x} is computed to be

$$\mathbf{DF} = \begin{bmatrix} 2x\cos(\pi y) & -x^2\pi\sin(\pi y) & 0\\ 0 & 3y^2 & 0\\ z^2 & 1 & 2xz \end{bmatrix}$$

When x=0, we see that \mathbf{DF} is lower triangular with diagonal entries $0,3y^2,0$, so the point (0,0,0) is stable (all eigenvalues of \mathbf{DF} lie inside unit circle) while the points $(0,\pm 1,\pm 1)$ are both unstable (there is an eigenvalue outside the unit circle). When $x=1,\ y=0$, so \mathbf{DF} is lower triangular with diagonal elements 2,0,2z. Therefore (1,0,0) and (1,0,1) are also unstable. When x=-1,y=1, then \mathbf{DF} is lower triangular with diagonal entries 2,3,-2z which shows it to be unstable.

In summary: only (0,0,0) is a stable fixed point.

(Question 2) Consider the relation

$$x_{n+1} = x_n - x_{n-1} + 2(2x_{n-1} - x_n)^3, (0.4)$$

where $x_n \in \mathbb{R}$.

(a) Introduce $y_n = x_{n-1}$ and write this relation as a dynamical system $\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n)$ where \mathbf{f} is a map from \mathbb{R}^2 to itself.

- (b) Find the fixed points of f.
- (c) Can the corresponding linearized map determine the stability of the fixed points?
- (d) Let $z_n = x_{n-1} + \epsilon x_n$ for some $\epsilon \in \mathbb{C}$. Show that, by choosing ϵ appropriately, the system (0.4) may expressed as

$$z_{n+1} = \alpha z_n + \beta_1 z_n^3 + \beta_2 z_n^2 \overline{z}_n + \beta_3 z_n \overline{z}_n^2 + \beta_4 \overline{z}_n^3$$

and calculate the complex-valued constants α , β_1 , β_2 , β_3 and β_4 .

(e) Explain briefly (without performing any calculations) how the system may rewritten in terms of a new variable ζ_n as

$$\zeta_{n+1} = \alpha \zeta_n + b \zeta_n^2 \overline{\zeta}_n + O(|\zeta_n|^4).$$

Determine b. [NB: it is not necessary to replicate the calculations in the notes. You may use the results.]

(f) Using (iv), show how the stability of the origin depends on b/ϵ and thereby comment upon the stability of the origin for the system (0.4).

Solution.

(a) We get

$$x_{n+1} = x_n - y_n + 2(2y_n - x_n)^3,$$

$$y_{n+1} = x_n,$$

so that

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x - y + 2(2y - x)^3 \\ x \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

- (b) For a fixed point of **f** we must have x = y, whence $x = 2x^3$ or x = 0 or $\pm \frac{1}{\sqrt{2}}$
- (c) Since

$$\mathbf{Df} = \begin{bmatrix} 1 - 6(2y - x)^2 & -1 + 12(2y - x)^2 \\ 1 & 0 \end{bmatrix}$$

we see that

$$\mathbf{Df}_{x=y=0} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{Df}_{x=y=\pm\frac{1}{\sqrt{2}}} = \begin{bmatrix} -2 & 5 \\ 1 & 0 \end{bmatrix}.$$

The former has complex eigenvalues $\lambda = \lambda_{\pm} = \frac{1 \pm \sqrt{-3}}{2}$ which are on the unit circle (and $\lambda^3 = -1$), while the latter has determinant -5, so the second and third fixed points must be unstable.

(d) We want $z = \langle \mathbf{t}, \mathbf{x} \rangle$ where \mathbf{t} is an eigenvector of \mathbf{Df}^T (transpose) belonging to the eigenvalue λ . We see that $\mathbf{t} = [-\lambda, 1]^T$ is such an eigenvector.

Therefore, let $z = \langle \mathbf{t}, \mathbf{x} \rangle = y - \lambda x$ so $z_n = x_{n-1} - \lambda x_n = y_n - \lambda x_n$, where $\lambda = \frac{1 - \sqrt{-3}}{2}$. This gives the value $\epsilon = -\lambda$. Then, we see that

$$z = (y - \frac{1}{2}x) + i\frac{\sqrt{3}}{2}x, \qquad z + \bar{z} = 2y - x.$$

If we compute

$$z_{n+1} = y_{n+1} - \lambda x_{n+1},$$

$$= x_n - \lambda (x_n - y_n + 2(2y_n - x_n)^3),$$

$$= (1 - \lambda)x_n + \lambda y_n - 2\lambda (z_n + \bar{z}_n)^3,$$

$$= \lambda z_n - 2\lambda z_n^3 - 6\lambda z_n^2 \bar{z}_n - 6\lambda z_n \bar{z}_n^2 - 2\lambda \bar{z}_n^3.$$
(0.5)

We have used the fact that $\lambda z = -\lambda^2 x + \lambda y = (1 - \lambda)x + \lambda y$ since $\lambda^2 - \lambda + 1 = 0$.

(e) Since λ is not a cube or quartic root of unity, we would define $\zeta = h(z) = z + \alpha z^3 + \beta z^2 \bar{z} + \gamma z \bar{z}^2 + \delta \bar{z}^3$ for an appropriate choice of α, γ, δ to kill the cubic terms in the DS of equation (0.5). However, we cannot kill the $z^2 \bar{z}$ term, so we would get $\zeta_{n+1} = \lambda \zeta_n + b \zeta_n^2 \bar{\zeta}_n + O(|\zeta_n|^4)$ where b is just the coefficient on the $z^2 \bar{z}$ term in (0.5):

$$b = -6\lambda$$
.

(f) We see that $|\zeta_{n+1}|^2 = |\zeta_n|^2 + 2h|\zeta_n|^3 + \cdots$ where $2h = \lambda \bar{b} + \bar{\lambda}b$ or $h = \text{Re}(\bar{\lambda}b)$. Therefore, h = -6. This shows that the origin is a stable fixed point for (*).